All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
MATERIAL MODELING FROM RAW DATA USING LS-DYNA INTRODUCTION: The LS-DYNA software's huge library of material models for a wide range of materials is a key feature. To apply these material models, model coefficients or parameters must be obtained, where material attributes are translated into…
MUJTABA HILAL
updated on 15 May 2023
MATERIAL MODELING FROM RAW DATA USING LS-DYNA
INTRODUCTION:
The LS-DYNA software's huge library of material models for a wide range of materials is a key feature. To apply these material models, model coefficients or parameters must be obtained, where material attributes are translated into the values required by the constitutive equations. While some models are simple, the majority are complicated and require some knowledge to understand how to extract model parameters. The material attributes are obtained by running certain tests on the target material. The input is then converted through a series of steps to produce the values or material parameters that feed the material model.
When these characteristics are appropriately recognized, the material model uses them to numerically re-create the intended material behaviors for use in software computations. Proper parameter identification is therefore critical to the simulation's performance; otherwise, severe error or failure can occur. Materials models and simulation tools are required to eliminate trial-and-error loops during the development of materials, components, and manufacturing processes, to illustrate complex load scenarios, and to make reliable predictions of the behavior of existing and developing materials and components.
The material model is provided as a mask over the underlying data in the CAE Modeller user interface so that the user may judge the goodness of fit between the model and raw data. In the case of the MAT_024 material model, for example, the selected equivalent stress v. plastic strain data points are back-calculated to stress-strain, allowing everything to be evaluated in the context of the known stress-strain curves.
The measurement of relevant material data is a critical step prior to the parameter identification process. This necessitates a thorough grasp of the material model's data requirements, the material's behavior, and the physical constraints of the testing procedure.
In most cases, the material model documentation and software specify the input data required for the material model. The problems associated with acquiring the correct data increase as the materials become more complicated.
The materials modeled by the material model are frequently complicated and multivariate in character, necessitating some type of approximation to correlate real life to mathematics. These variables can have an effect on the simulation's realism. Testing is frequently constrained by physical constraints, such as the inability to carry out the tests in the manner predicted by the model theory. Writing the output file is a mechanical process that entails writing the data in the correct format. All necessary options and flags must be set correctly. To capture all of the needed data, LS-DYNA's file format cascades using mixes of tables and curves. If the file is appropriately written, the material parameters will be read into LS-DYNA. Validation is the process of comparing the material model to the simulation. It has three degrees of difficulty. The unit element test simply ensures that the model does not produce non-physical outcomes by running it against a single finite element. The goal of closed-loop validation is to replicate the original test that generated the material model. In the MAT-24 scenario, tensile testing would be simulated to see if the original stress-strain curves were replicated. The most complex validation method is open-loop validation, in which an alternate or multi-mode experiment is compared to a simulation.
AIM:
Use the diagram of the true stress-strain curve of graphite iron casting. Two curves are there for different material structures. Select one of these and use the data to generate a MAT_024 or MAT_018 material model, which must then be validated.
The primary objectives for this assignment are as follows:
EXPLANATION:
True strain = ln(1 + engineering strain)
where ln designates the natural log
True stress = (engineering stress) * exp(true strain) = (engineering stress) * (1 + engineering strain)
where exp(true strain) is 2.71 raised to the power of (true strain).
True Strain(%) True Stress(ksi)
4.19E-03 1.26E+00
1.08E-02 2.44E+00
1.50E-02 3.35E+00
1.92E-02 4.54E+00
2.50E-02 5.94E+00
3.33E-02 7.54E+00
3.74E-02 8.59E+00
4.16E-02 9.29E+00
4.57E-02 9.78E+00
5.24E-02 1.14E+01
5.82E-02 1.24E+01
6.07E-02 1.35E+01
6.90E-02 1.49E+01
6.90E-02 1.54E+01
7.73E-02 1.68E+01
8.14E-02 1.77E+01
8.56E-02 1.85E+01
8.97E-02 1.91E+01
9.14E-02 1.98E+01
9.56E-02 2.06E+01
1.04E-01 2.16E+01
1.06E-01 2.22E+01
1.15E-01 2.29E+01
1.19E-01 2.34E+01
1.24E-01 2.44E+01
1.31E-01 2.51E+01
1.35E-01 2.55E+01
1.41E-01 2.60E+01
1.45E-01 2.69E+01
1.52E-01 2.72E+01
1.56E-01 2.74E+01
1.60E-01 2.78E+01
1.68E-01 2.83E+01
1.72E-01 2.86E+01
1.78E-01 2.90E+01
1.82E-01 2.95E+01
1.93E-01 3.00E+01
2.02E-01 3.06E+01
2.09E-01 3.09E+01
2.19E-01 3.14E+01
2.25E-01 3.14E+01
2.33E-01 3.17E+01
2.43E-01 3.21E+01
2.50E-01 3.23E+01
2.55E-01 3.24E+01
2.64E-01 3.28E+01
2.72E-01 3.30E+01
2.82E-01 3.31E+01
2.92E-01 3.33E+01
3.07E-01 3.37E+01
3.19E-01 3.40E+01
3.29E-01 3.42E+01
3.41E-01 3.45E+01
3.56E-01 3.45E+01
3.64E-01 3.47E+01
3.76E-01 3.49E+01
3.86E-01 3.48E+01
3.94E-01 3.51E+01
4.05E-01 3.52E+01
4.13E-01 3.54E+01
4.25E-01 3.54E+01
4.41E-01 3.54E+01
4.51E-01 3.55E+01
4.62E-01 3.55E+01
4.75E-01 3.59E+01
4.94E-01 3.59E+01
5.06E-01 3.61E+01
5.16E-01 3.61E+01
5.33E-01 3.62E+01
5.53E-01 3.65E+01
5.63E-01 3.65E+01
5.80E-01 3.65E+01
5.96E-01 3.69E+01
6.12E-01 3.69E+01
6.18E-01 3.69E+01
6.38E-01 3.71E+01
6.49E-01 3.71E+01
6.63E-01 3.71E+01
6.73E-01 3.72E+01
6.95E-01 3.74E+01
7.02E-01 3.74E+01
True Strain True Stress(GPa)
4.19E-05 8.67E-03
1.08E-04 1.69E-02
1.50E-04 2.31E-02
1.92E-04 3.13E-02
2.50E-04 4.09E-02
3.33E-04 5.20E-02
3.74E-04 5.92E-02
4.16E-04 6.40E-02
4.57E-04 6.74E-02
5.24E-04 7.85E-02
5.82E-04 8.57E-02
6.07E-04 9.29E-02
6.90E-04 1.03E-01
6.90E-04 1.06E-01
7.73E-04 1.16E-01
8.14E-04 1.22E-01
8.56E-04 1.28E-01
8.97E-04 1.31E-01
9.14E-04 1.36E-01
9.56E-04 1.42E-01
1.04E-03 1.49E-01
1.06E-03 1.53E-01
1.15E-03 1.58E-01
1.19E-03 1.61E-01
1.24E-03 1.68E-01
1.31E-03 1.73E-01
1.35E-03 1.76E-01
1.41E-03 1.80E-01
1.45E-03 1.85E-01
1.52E-03 1.88E-01
1.56E-03 1.89E-01
1.60E-03 1.92E-01
1.68E-03 1.95E-01
1.72E-03 1.97E-01
1.78E-03 2.00E-01
1.82E-03 2.04E-01
1.93E-03 2.07E-01
2.02E-03 2.11E-01
2.09E-03 2.13E-01
2.19E-03 2.17E-01
2.25E-03 2.17E-01
2.33E-03 2.19E-01
2.43E-03 2.21E-01
2.50E-03 2.23E-01
2.55E-03 2.24E-01
2.64E-03 2.26E-01
2.72E-03 2.27E-01
2.82E-03 2.28E-01
2.92E-03 2.30E-01
3.07E-03 2.32E-01
3.19E-03 2.35E-01
3.29E-03 2.36E-01
3.41E-03 2.38E-01
3.56E-03 2.38E-01
3.64E-03 2.39E-01
3.76E-03 2.40E-01
3.86E-03 2.40E-01
3.94E-03 2.42E-01
4.05E-03 2.43E-01
4.13E-03 2.44E-01
4.25E-03 2.44E-01
4.41E-03 2.44E-01
4.51E-03 2.45E-01
4.62E-03 2.45E-01
4.75E-03 2.47E-01
4.94E-03 2.47E-01
5.06E-03 2.49E-01
5.16E-03 2.49E-01
5.33E-03 2.50E-01
5.53E-03 2.52E-01
5.63E-03 2.52E-01
5.80E-03 2.52E-01
5.96E-03 2.54E-01
6.12E-03 2.54E-01
6.18E-03 2.54E-01
6.38E-03 2.56E-01
6.49E-03 2.56E-01
6.63E-03 2.56E-01
6.73E-03 2.57E-01
6.95E-03 2.58E-01
7.02E-03 2.58E-01
effective plastic strain (input value) = total true strain - true stress/E
Effective Plastic Strain Effective/ True Stress(Gpa)
-1.83E-05 0.008670059
-8.82E-06 0.016852935
-1.07E-05 0.023112309
-2.57E-05 0.031300231
-3.42E-05 0.040931201
-2.81E-05 0.052003536
-3.66E-05 0.059227184
-2.86E-05 0.064040146
-1.08E-05 0.067406696
-2.10E-05 0.078482396
-1.32E-05 0.08570268
-3.79E-05 0.092929691
-2.20E-05 0.102555615
-4.49E-05 0.105930575
-2.90E-05 0.115556499
-3.09E-05 0.121815872
-2.95E-05 0.127593109
-1.50E-05 0.131441796
-3.15E-05 0.136259804
-3.01E-05 0.14203704
2.24E-06 0.149252279
4.61E-07 0.15310433
4.92E-05 0.157908883
6.70E-05 0.161275433
7.48E-05 0.168495717
1.07E-04 0.173303634
1.32E-04 0.17570591
1.62E-04 0.179551234
1.64E-04 0.18532847
2.13E-04 0.187725701
2.44E-04 0.189163703
2.68E-04 0.19156598
3.26E-04 0.194924121
3.51E-04 0.197326397
3.91E-04 0.19972531
4.06E-04 0.203573997
4.89E-04 0.206927093
5.61E-04 0.210764008
6.09E-04 0.213161238
6.84E-04 0.216516016
7.49E-04 0.216502561
8.15E-04 0.218896428
8.96E-04 0.221286931
9.51E-04 0.222719887
1.00E-03 0.223672389
1.07E-03 0.226066256
1.14E-03 0.227495848
1.24E-03 0.228438258
1.33E-03 0.229864487
1.46E-03 0.232244899
1.56E-03 0.234630357
1.65E-03 0.235574448
1.76E-03 0.237959906
1.91E-03 0.237929632
1.98E-03 0.239359225
2.09E-03 0.240298271
2.19E-03 0.240278089
2.26E-03 0.241707681
2.36E-03 0.242650091
2.43E-03 0.244079684
2.56E-03 0.244054456
2.72E-03 0.244020818
2.81E-03 0.24496491
2.92E-03 0.244943046
3.04E-03 0.24732514
3.23E-03 0.247286456
3.34E-03 0.24870764
3.44E-03 0.248687457
3.59E-03 0.249618094
3.78E-03 0.251986733
3.89E-03 0.251964869
4.05E-03 0.251931231
4.20E-03 0.254308279
4.36E-03 0.254274642
4.42E-03 0.254262869
4.61E-03 0.255667233
4.72E-03 0.255645369
4.85E-03 0.255616777
4.95E-03 0.256559187
5.16E-03 0.257960188
5.23E-03 0.257946733
Input-Effective Plastic Strain= First Effective plastic strain positive value + Common difference
Common difference = (Last positive Effective Plastic strain - First positive Effective plastic strain)/ Number of values
Input-Effective/ True Stress(Gpa) = 0.022*LN(First positive Effective plastic strain)+0.3747
Input-Effective Plastic Strain Input-Effective/ True Stress(Gpa) Common difference
4.60791E-07 0.053712937 8.71456E-05
8.76063E-05 0.169161544
0.000174752 0.184352848
0.000261897 0.193253735
0.000349043 0.199573062
0.000436189 0.20447641
0.000523334 0.208483611
0.00061048 0.211872158
0.000697625 0.214807773
0.000784771 0.217397385
0.000871916 0.219714025
0.000959062 0.221809792
0.001046207 0.223723161
0.001133353 0.225483355
0.001220499 0.227113092
0.001307644 0.228630381
0.00139479 0.230049744
0.001481935 0.231383058
0.001569081 0.232640163
0.001656226 0.233829302
0.001743372 0.234957449
0.001830517 0.236030555
0.001917663 0.237053744
0.002004809 0.238031453
0.002091954 0.238967554
0.0021791 0.239865444
0.002266245 0.24072812
0.002353391 0.241558242
0.002440536 0.242358176
0.002527682 0.243130042
0.002614827 0.243875743
0.002701973 0.244596994
0.002789119 0.245295348
0.002876264 0.245972214
0.00296341 0.246628876
0.003050555 0.247266504
0.003137701 0.247886171
0.003224846 0.248488861
0.003311992 0.249075479
0.003399137 0.249646862
0.003486283 0.250203779
0.003573429 0.250746945
0.003660574 0.251277024
0.00374772 0.251794631
0.003834865 0.252300339
0.003922011 0.252794683
0.004009156 0.253278162
0.004096302 0.253751245
0.004183447 0.254214369
0.004270593 0.254667943
0.004357739 0.255112355
0.004444884 0.255547968
0.00453203 0.255975122
0.004619175 0.25639414
0.004706321 0.256805326
0.004793466 0.257208968
0.004880612 0.257605337
0.004967758 0.257994692
0.005054903 0.258377275
0.005142049 0.258753318
0.005229194 0.259123042
Yield strength (SIGY) = 621
= 621 x 0.2 (0.2% strain offset)
= 124.2 MPa
= 124.2/1000
= 0.124 GPa
Poisson’s ratio (PR) = 0.24
Density (RO) = 7300 Kg/m3
= 7300 x 10-9 Kg/mm3
CONCLUSION:
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
Assignment 7-Side Pole Crash Simulation Challenge
SIDE POLE CRASH SIMULATION USING RADIOSS INTRODUCTION The conventional robust procedure used experimental testing techniques, putting sensor-equipped dummies on the driver's (and passenger's) seat, rather than relying on computers and models. The most well-known kind of test is an automobile frontally…
04 Apr 2024 12:06 AM IST
Assignment 6-Frontal Crash Simulation Challenge
FRONTAL CRASH SIMULATION USING RADIOSS INTRODUCTION A test that replicates an automobile striking a rigid wall at a specific speed is called a frontal crash with a rigid wall. The test is meant to assess the vehicle's safety features, like seat belts and airbags. Euro NCAP: Vehicles are tested at 50 km/h (31 mph)…
19 Jan 2024 11:44 AM IST
Assignment 5-RADIOSS Interfaces & Study of Effect of Notches Challenge
RADIOSS INTERFACES & STUDY OF EFFECT OF NOTCHES INTRODUCTION The boundary condition nonlinearity of complex dynamic contact problems is effectively resolved by the explicit analysis method. To accurately capture contact interaction between bodies, accurate modelling of contact interfaces is necessary.…
03 Jan 2024 09:55 AM IST
Assignment 4-RADIOSS Material Laws Challenge
RADIOSS MATERIAL LAWS INTRODUCTION The inputs used in any effective simulation are crucial, and to obtain the greatest analysis results, a skilled analyst would always assess and verify the accuracy of the inputs. The type of material selected and the properties offered by the material should…
25 Dec 2023 12:11 PM IST
Related Courses
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.