All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
Project Title: Vehicle Direction Determination Aim To create a Simulink model of Vehicle Direction Detection as per the Requirement data. General Overview: Identifying the direction of the vehicle is one of the important & diverse features in Autonomous driving & Advanced Driver Assistance Features. This particular sub-feature…
Satish M
updated on 15 Oct 2023
Project Title: Vehicle Direction Determination
Aim
To create a Simulink model of Vehicle Direction Detection as per the Requirement data.
General Overview:
Identifying the direction of the vehicle is one of the important & diverse features in Autonomous driving & Advanced Driver Assistance Features. This particular sub-feature of identifying the direction of vehicle is basically identifying the direction the vehicle is taking based on the camera input.
Camera reads the road signs & stores into its memory with unique values for left turn, right turn & straight drive. Depending on the direction it is taking, final indication is given to the driver – as an indication if he is driving in the recommended direction or not.
Vehicle Direction Determination can also be coupled along - side features like GPS systems to identify whether the vehicle is reaching its destination in an optimized manner. This sub feature can also be used along with Lane Detection, Highway Warning, Ramp Entry / Exit in Wrong Way Detection etc.
Requirement - 1
Requirement – 2:
Signals & Calibration Data List:
Signal / Calibration Name |
Signal Type |
Data Type |
Dimension |
Min |
Max |
Initial Value |
Units |
SteeringWheel_YawDegreeInput |
Input |
Int16 |
1 |
-180 |
180 |
- |
Deg |
CameraInput_RoadSign |
Input |
Boolean |
1 |
0 |
1 |
- |
- |
Vehicle_Turn_Status |
Local |
Int16 |
1 |
-180 |
180 |
- |
Deg |
Right_Turn_AngularLimit |
Calibration |
Int16 |
[1 1] |
-180 |
180 |
30 |
Deg |
Left_Turn_AngularLimit |
Calibration |
Int16 |
[1 1] |
-180 |
180 |
-120 |
Deg |
Straight_Drive_Steering_Angle |
Calibration |
Int16 |
[1 1] |
-180 |
180 |
0 |
Deg |
RightTurn_RoadSign |
Calibration |
Int16 |
[1 1] |
-180 |
180 |
30 |
|
LeftTurn_RoadSign |
Calibration |
Int16 |
[1 1] |
-180 |
180 |
-120 |
|
Straight_RoadSign |
Calibration |
Int16 |
[1 1] |
-180 |
180 |
0 |
|
Vehicle_Direction_Indicator |
Output |
Boolean |
1 |
0 |
1 |
- |
- |
Model Screenshots
SLDD File
The SLDD file is created to store the calibration values, input, and output signals.
Blocks Used
Blocks used to create a model are
Results
Scenario 1: SteeringWheel_YawDegreeInput with it’s original initial value
After running the simulation, we can clearly see that the vehicle is moving in the straight direction.
Scenario 2: SteeringWheel_YawDegreeInput as 50
After running the simulation, we can clearly see that the vehicle is taking the right turn.
Scenario 2: SteeringWheel_YawDegreeInput as -130
After running the simulation, we can clearly see that the vehicle is taking the left turn.
Conclusion
Autonomous vehicles consist of various Advanced Driver Assistance System (ADAS) features. Vehicle Direction Detection is one of the most important ADAS features.
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
Project 1 (Mini Project on Vehicle Direction Detection
Project Title: Vehicle Direction Determination Aim To create a Simulink model of Vehicle Direction Detection as per the Requirement data. General Overview: Identifying the direction of the vehicle is one of the important & diverse features in Autonomous driving & Advanced Driver Assistance Features. This particular sub-feature…
15 Oct 2023 06:26 PM IST
Project 1
Boost Converter (CCM): Vi=20-30V V0=40V Vo/Vi=1/1-D Range of Duty Cycle if Vi is 20 40/20=2 1-D=0.5 D=0.5 If Vi=30 Vo/vi=4/3 1-D=1.33 D=0.33 Calculation of Load Resistor: As per given data P=600W V0=40V R=Vo^2/P R=1600/600 R=2.66 ohm Calcultion of Inductance: Assume fs=100khz current ripple is 20% Inductor current…
10 Nov 2021 06:47 AM IST
Week 4 Challenge
Consider the following operating points of a fuel cell during a short period of operation. 15 W/cm2 3 W/cm2 27 W/cm2 Where would these points go in the diagram below? The power at some points are as follows P1=1V*0A/cm2 =0w/cm2 P2=0.75*0.3= 0.225 w/cm2 P3= 0.6*0.75 =0.45 w/cm2 P4=0.25*1.15 =0.2875 from the above points…
23 Jun 2021 08:23 AM IST
Week 7 Challenge
The vehicle parameters for modeling in MATLAB/Simulink is as follows fr = coefficient of rolling resistance =0.015g = gravitational acceleration=9.81M = vehicle mass=1910.2kgQ = air density=1.29Cx = aerodynamic drag coefficient=0.4170A = frontal surface area of the vehicle=2.86 The simulation is divided into four sections…
20 May 2021 11:58 AM IST
Related Courses
0 Hours of Content
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.