All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
Objective Simulating two dimensional Fourier biot equation with no internal heat generation on a square plate with the temperature of 400,800,900,600 degrees Celcius on left, right, bottom, top respectively. To solve this differential equation finite difference method is being used, and to solve linear equations…
saurabh talele
updated on 13 Sep 2019
Objective
Simulating two dimensional Fourier biot equation with no internal heat generation on a square plate with the temperature of 400,800,900,600 degrees Celcius on left, right, bottom, top respectively. To solve this differential equation finite difference method is being used, and to solve linear equations gauss-seidel, Jacobi, a successive over-relaxation method is being used.
Steps to solve
Unsteady 2d heat equation or fourier biot 2d heat equation
euation
dTdt=α⋅(d2Tdx2+d2Tdy2)
α=kcp⋅ρ
k=thermalconductivity
cp= specific heat capacity
rho = dencity of that material.
implicite (n+1) term of time with forward in time central in space
Tn+1(i,j)=Tpn+1
Tp(n+1)(i,j)=(1+2k1+2k2)−1⋅((Tpn(i,j))+[((T(i−1,j))+T(i+1,j))+((T(i,j−1))+T(i,j+1))]n+1)
k1=α⋅(dtdx2)
k2=α⋅(dtdy2)
Jacobi iteration
clear all
close all
clc
%dT/dt-alpha(d^2(T)/dx^2+d^2(T)/dy^2)=0
% number of grid point in x direction
nx = 10;
% number of grid point in y direction
ny=nx;
x=linspace(0,1,nx); % 0 to 1 equal dirubuted values are 10 beacause nx is 10 size 1*10
y=linspace(0,1,ny);
% assign bouundary condition
T(ny,nx)=zeros; % size arry 10*10 all value are 1
% all row 1 st column left 400
T(:,1)=400;
% all row last last column right 800
T(:,nx)=800;
% first row all column top 600 temp
T(1,:)=600;
% last row all column bottom 900 temp
T(nx,:)=900;
% corner points average
T(1,1)=(600+400)*0.5;
T(end,1)=(900+400)*0.5;
T(end,end)=(800+900)*0.5;
T(1,end)=(600+800)*0.5;
%copy of T
Told=T;
Tprev_dt=Told;
% thermal diffusivity k/rho*cp
alpha=0.5;
% space between two point on x or y axis
dx=x(2)-x(1);
dy=y(2)-y(1);
% time increment
dt=0.9;
%cfl
k1=alpha*(dt/dx^2);
k2=alpha*(dt/dy^2);
% error
error=9e9;
%jacobi iterative solver
% till tolerance
tol=1e-4;
% time loop
for w=1:3
% convergence loop
% initial jacobi iter
jacobi_iter=1;
while (error>tol)
% space loop
for i=2:nx-1
for j=2:ny-1
term1=((1+(2*k1))+(2*k2))^-1;
term2=k1*term1;
term3=k2*term1;
H=(Told(i-1,j))+Told(i+1,j);
V=(Told(i,j-1))+Told(i,j+1);
T(i,j)=(Tprev_dt(i,j)*term1)+(H*term2)+(V*term3);
end
end
error=max(max(abs(Told-T)))
% updating error term to next itervation
Told=T;
jacobi_iter=jacobi_iter+1;
contourf(x,y,T)
colorbar
xlabel(\'x axis\')
ylabel(\'yaxis\')
title_text = sprintf(\'iteration number=%d\',jacobi_iter);
title(title_text)
drawnow
end
T=Tprev_dt;
end
output
The implicit method here is stable and gives iteration of 196 for Jacobi which more than Gauss and successive over relaxation.
k1 and k2 = 36.4500
gauss seidel itertion in transient heat conduction in implicite discetization
clear all
close all
clc
%dT/dt-alpha(d^2(T)/dx^2+d^2(T)/dy^2)=0
% number of grid point in x direction
nx = 10;
% number of grid point in y direction
ny=nx;
x=linspace(0,1,nx); % 0 to 1 equal dirubuted values are 10 beacause nx is 10 size 1*10
y=linspace(0,1,ny);
% assign bouundary condition
T(ny,nx)=zeros; % size arry 10*10 all value are 1
% all row 1 st column left 400
T(:,1)=400;
% all row last last column right 800
T(:,nx)=800;
% first row all column top 600 temp
T(1,:)=600;
% last row all column top 900 temp
T(nx,:)=900;
% corner points average
T(1,1)=(600+400)*0.5;
T(end,1)=(900+400)*0.5;
T(end,end)=(800+900)*0.5;
T(1,end)=(600+800)*0.5;
%copy of T
Told=T;
Tprev_dt=Told;
% thermal diffusivity k/rho*cp
alpha=0.5;
% space between two point on x or y axis
dx=x(2)-x(1);
dy=y(2)-y(1);
% time increment
dt=0.9;
%cfl
k1=alpha*(dt/dx^2);
k2=alpha*(dt/dy^2);
% error
error=9e9;
%jacobi iterative solver
% till tolerance
tol=1e-4;
% time loop
% forward 3 steps
for w=1:3
% convergence loop
% initial jacobi iter
gs_implicite=1;
while (error>tol)
% space loop
for i=2:nx-1
for j=2:ny-1
term1=((1+(2*k1))+(2*k2))^-1;
term2=k1*term1;
term3=k2*term1;
H=(T(i-1,j))+T(i+1,j);
V=(T(i,j-1))+T(i,j+1);
T(i,j)=(T(i,j)*term1)+(H*term2)+(V*term3);
end
end
error=max(max(abs(Told-T)))
% updating error term to next itervation
Told=T;
gs_implicite=gs_implicite+1;
contourf(x,y,T)
colorbar
title_text = sprintf(\'iteration number=%d\',gs_implicite);
title(title_text)
drawnow
end
T=Tprev_dt;
end
plotting
here a number of the iteration is less because previously calculated values of T are used to find next iteration
Sucessive over relaxation implicite on transient
Tn+1(i,j)=(1−w)T(i,j)+w⋅[(1+2⋅k1+2⋅k2)−1][T(i,j)+k1⋅T(i−1,j)+k1⋅(i+1,j)+k2⋅(i,j−1)+k2⋅(i,j+1)]
clear all
close all
clc
%dT/dt-alpha(d^2(T)/dx^2+d^2(T)/dy^2)=0
% number of grid point in x direction
nx = 10;
% number of grid point in y direction
ny=nx;
x=linspace(0,1,nx); % 0 to 1 equal dirubuted values are 10 beacause nx is 10 size 1*10
y=linspace(0,1,ny);
% assign bouundary condition
T(ny,nx)=zeros; % size arry 10*10 all value are 1
% all row 1 st column left 400
T(:,1)=400;
% all row last last column right 800
T(:,nx)=800;
% first row all column top 600 temp
T(1,:)=600;
% last row all column top 900 temp
T(nx,:)=900;
% corner points average
T(1,1)=(600+400)*0.5;
T(end,1)=(900+400)*0.5;
T(end,end)=(800+900)*0.5;
T(1,end)=(600+800)*0.5;
%copy of T
Told=T;
Tprev_dt=Told;
% thermal diffusivity k/rho*cp
alpha=0.5;
% space between two point on x or y axis
dx=x(2)-x(1);
dy=y(2)-y(1);
% time increment
dt=0.9;
%cfl
k1=alpha*(dt/dx^2);
k2=alpha*(dt/dy^2);
%omega w>1
w=1.5;
% error
error=9e9;
%jacobi iterative solver
% till tolerance
tol=1e-4;
% time loop
for Y=1:3
% convergence loop
% initial jacobi iter
gs_implicite=1;
while (error>tol)
% space loop
for i=2:nx-1
for j=2:ny-1
term1=((1+(2*k1))+(2*k2))^-1;
term2=k1*term1;
term3=k2*term1;
H=(T(i-1,j))+T(i+1,j);
V=(T(i,j-1))+T(i,j+1);
J(i,j)=(T(i,j)*term1)+(H*term2)+(V*term3);
T(i,j)=((1-w)*T(i,j))+(w*J(i,j));
end
end
error=max(max(abs(Told-T)))
% updating error term to next itervation
Told=T;
gs_implicite=gs_implicite+1;
contourf(x,y,T)
colorbar
title_text = sprintf(\'iteration number=%d\',gs_implicite);
title(title_text)
drawnow
end
T=Tprev_dt;
end
plotting
successive over-relaxation required less number of iteration than GS and Jacobi.
explicite (n+1) term of time with forward in time central in space
Tn+1(i,j)=Tpn+1
Tp(n+1)(i,j)=(1−2k1−2k2)⋅[((Tpn(i,j))]+[{((T(i−1,j))+T(i+1,j))}⋅k1+⋅k2{((T(i,j−1))+{T(i,j+1))}]n)
k1=alpha*(dt/dx^2)
k2=alpha*(dt/dy^2)
explicite jacobi in transient state heat equation grid points 10
clear all
close all
clc
%dT/dt-alpha(d^2(T)/dx^2+d^2(T)/dy^2)=0
% number of grid point in x direction
nx = 10;
% number of grid point in y direction
ny=nx;
x=linspace(0,1,nx); % 0 to 1 equal dirubuted values are 10 beacause nx is 10 size 1*10
y=linspace(0,1,ny);
% assign bouundary condition
T(ny,nx)=zeros; % size arry 10*10 all value are 1
% all row 1 st column left 400
T(:,1)=400;
% all row last last column right 800
T(:,nx)=800;
% first row all column top 600 temp
T(1,:)=600;
% last row all column top 900 temp
T(nx,:)=900;
% corner points average
T(1,1)=(600+400)*0.5;
T(end,1)=(900+400)*0.5;
T(end,end)=(800+900)*0.5;
T(1,end)=(600+800)*0.5;
%copy of T
Told=T;
Tprev_dt=Told;
% thermal diffusivity k/rho*cp (aluminium)
alpha=0.5;
% space between two point on x or y axis
dx=x(2)-x(1);
dy=y(2)-y(1);
% time increment
dt=0.0062;
%cfl
k1=alpha*(dt/dx^2);
k2=alpha*(dt/dy^2);
% error
error=9e9;
%jacobi iterative solver
% till tolerance
tol=1e-4;
% time loop 30 cycle
tic;
for w=1:30
% convergence loop
% initial jacobi iter
jacob_iter_expli=1;
while (error>tol)
% space loop
for i=2:nx-1
for j=2:ny-1
term1=((1-(2*k1))-(2*k2));
H=(Told(i-1,j))+Told(i+1,j);
V=(Told(i,j-1))+Told(i,j+1);
T(i,j)=(Tprev_dt(i,j)*(term1))+k1*(H)+k2*(V);
end
end
error=max(max(abs(Told-T)))
% updating error term to next itervation
Told=T;
jacob_iter_expli=jacob_iter_expli+1;
contourf(x,y,T)
colorbar
xlabel('x axis')
ylabel('y axis')
title_text = sprintf('iteration number=%d',jacob_iter_expli);
title(title_text)
drawnow
end
T=Tprev_dt;
end
t1_jacob_explicite_trans=toc;
figure(2)
bar(t1_jacob_explicite_trans)
ylabel('simulation time ')
title('jacobi iteration in unsteady simulation time(explicite)')
PLOTTING of explicite jacobi transient 2d heat
here solution looks like it gets stable
Explicit solution using gauss using grid point 10
clear all
close all
clc
%dT/dt-alpha(d^2(T)/dx^2+d^2(T)/dy^2)=0
% number of grid point in x direction
nx = 10;
% number of grid point in y direction
ny=nx;
x=linspace(0,1,nx); % 0 to 1 equal dirubuted values are 10 beacause nx is 10 size 1*10
y=linspace(0,1,ny);
% assign bouundary condition
T(ny,nx)=zeros; % size arry 10*10 all value are 1
% all row 1 st column left 400
T(:,1)=400;
% all row last last column right 800
T(:,nx)=800;
% first row all column top 600 temp
T(1,:)=600;
% last row all column top 900 temp
T(nx,:)=900;
% corner points average
T(1,1)=(600+400)*0.5;
T(end,1)=(900+400)*0.5;
T(end,end)=(800+900)*0.5;
T(1,end)=(600+800)*0.5;
%copy of T
Told=T;
% thermal diffusivity k/rho*cp (aluminium)
alpha=0.5;
% space between two point on x or y axis
dx=x(2)-x(1);
dy=y(2)-y(1);
% time increment
dt=0.0062;
%cfl
k1=alpha*(dt/dx^2);
k2=alpha*(dt/dy^2);
% error
error=9e9;
%jacobi iterative solver
% till tolerance
tol=1e-4;
% time loop
for w=1:3
% convergence loop
% initial jacobi iter
expli_gs_iter=1;
while (error>tol)
% space loop
for i=2:nx-1
for j=2:ny-1
term1=((1-(2*k1))-(2*k2));
H=(T(i-1,j))+T(i+1,j);
V=(T(i,j-1))+T(i,j+1);
T(i,j)=(T(i,j)*(term1))+k1*(H)+k2*(V);
end
end
error=max(max(abs(Told-T)))
% updating error term to next itervation
Told=T;
expli_gs_iter=expli_gs_iter+1;
contourf(x,y,T)
colorbar
xlabel(\'x axis\')
ylabel(\'y axis\')
title_text = sprintf(\'iteration number=%d\',expli_gs_iter);
title(title_text)
drawnow
end
T=Told;
end
plotting (explicit with transient gauss iteration method)
here again, compare to implicit its stable less iteration than Jacobi used for explicit solver\\.
explicit solver and successive over-relaxation using gauss with w=1.5
T(i,j)=(1−w)T(i,j)+(w)⋅[(T(i,j)(1−2⋅k1−2⋅k2)+k1⋅(T(i−1,j)−T(i+1,j))+k2⋅(T(i,j−1)−T(i,j+1))}
clear all
close all
clc
%dT/dt-alpha(d^2(T)/dx^2+d^2(T)/dy^2)=0
% number of grid point in x direction
nx = 10;
% number of grid point in y direction
ny=nx;
x=linspace(0,1,nx); % 0 to 1 equal dirubuted values are 10 beacause nx is 10 size 1*10
y=linspace(0,1,ny);
% assign bouundary condition
T(ny,nx)=zeros; % size arry 10*10 all value are 1
% all row 1 st column left 400
T(:,1)=400;
% all row last last column right 800
T(:,nx)=800;
% first row all column top 600 temp
T(1,:)=600;
% last row all column top 900 temp
T(nx,:)=900;
% corner points average
T(1,1)=(600+400)*0.5;
T(end,1)=(900+400)*0.5;
T(end,end)=(800+900)*0.5;
T(1,end)=(600+800)*0.5;
%copy of T
Told=T;
% thermal diffusivity k/rho*cp (aluminium)
alpha=0.5;
% space between two point on x or y axis
dx=x(2)-x(1);
dy=y(2)-y(1);
% time increment
dt=0.062;
%cfl
k1=alpha*(dt/dx^2);
k2=alpha*(dt/dy^2);
%sucessive over relaxation value w>1
w=1.5;
% error
error=9e9;
%jacobi iterative solver
% till tolerance
tol=1e-4;
% time loop
for O=1:3
% convergence loop
% initial jacobi iter
expli_gs_iter=1;
while (error>tol)
% space loop
for i=2:nx-1
for j=2:ny-1
term1=((1-(2*k1))-(2*k2));
H=(T(i-1,j))+T(i+1,j);
V=(T(i,j-1))+T(i,j+1);
J(i,j)=(T(i,j)*(term1))+k1*(H)+k2*(V);
T(i,j)=(1-w)*T(i,j)+(w*(J(i,j));
end
end
error=max(max(abs(Told-T)))
% updating error term to next itervation
Told=T;
expli_gs_iter=expli_gs_iter+1;
contourf(x,y,T)
colorbar
xlabel(\'x axis\')
ylabel(\'y axis\')
title_text = sprintf(\'iteration number=%d\',expli_gs_iter);
title(title_text)
drawnow
end
T=Told;
end
Plotting(gauss on SOR in a transient equation)
above plot is also stable
equation for steady state
T(i,j)=(1k)⋅((Told(i+1,j)+Told(i−1,j)dx2+Told(i,j+1)+Told(i,j−1)(dy)2))
k=(2(dx)2)+(2(dy)2)
using jacobi iteration
clear all
close all
clc
%(d^2(T)/dx^2+d^2(T)/dy^2)=0
% number of grid point in x direction
nx = 10;
% number of grid point in y direction
ny=nx;
x=linspace(0,1,nx); % 0 to 1 equal dirubuted values are 10 beacause nx is 10 size 1*10
y=linspace(0,1,ny);
% assign bouundary condition
T(ny,nx)=300*ones; % size arry 10*10 all value are 300kelivn
% all row 1 st column left 400
T(:,1)=400;
% all row last last column right 800
T(:,nx)=800;
% first row all column top 600 temp
T(1,:)=600;
% last row all column top 900 temp
T(nx,:)=900;
% corner points average
T(1,1)=(600+400)*0.5;
T(end,1)=(900+400)*0.5;
T(end,end)=(800+900)*0.5;
T(1,end)=(600+800)*0.5;
%copy of T
Told=T;
% space between two point on x or y axis
dx=x(2)-x(1);
dy=y(2)-y(1);
k=(2/(dx)^2)+(2/(dy)^2);
% error
error=9e9;
%jacobi iterative solver
% till tolerance
tol=1e-4;
% convergence loop
% initial jacobi iter
jacobi_iter=1;
while (error>tol)
% space loop
for i=2:nx-1
for j=2:ny-1
T(i,j)=(1/k)*(((Told(i+1,j)+Told(i-1,j))/(dx^2)+(Told(i,j+1)+Told(i,j-1))/(dy)^2));
end
end
error=max(max(abs(Told-T)));
% updating error term to next itervation
Told=T;
jacobi_iter=jacobi_iter+1;
contourf(x,y,T)
colorbar
xlabel(\'x axis\')
ylabel(\'y axis\')
title_text = sprintf(\'iteration number=%d\',jacobi_iter);
title(title_text)
drawnow
end
plot
here iteration is 217 for Jacobi steady state
gauss seidel on steady-state
clear all
close all
clc
%(d^2(T)/dx^2+d^2(T)/dy^2)=0
% number of grid point in x direction
nx = 10;
% number of grid point in y direction
ny=nx;
x=linspace(0,1,nx); % 0 to 1 equal dirubuted values are 10 beacause nx is 10 size 1*10
y=linspace(0,1,ny);
% assign bouundary condition
T(ny,nx)=300*ones; % size arry 10*10 all value are 300kelivn
% all row 1 st column left 400
T(:,1)=400;
% all row last last column right 800
T(:,nx)=800;
% first row all column top 600 temp
T(1,:)=600;
% last row all column top 900 temp
T(nx,:)=900;
% corner points average
T(1,1)=(600+400)*0.5;
T(end,1)=(900+400)*0.5;
T(end,end)=(800+900)*0.5;
T(1,end)=(600+800)*0.5;
%copy of T
Told=T;
% space between two point on x or y axis
dx=x(2)-x(1);
dy=y(2)-y(1);
k=(2/(dx)^2)+(2/(dy)^2);
% error
error=9e9;
%jacobi iterative solver
% till tolerance
tol=1e-4;
% convergence loop
% initial jacobi iter
jacobi_iter=1;
while (error>tol)
% space loop
for i=2:nx-1
for j=2:ny-1
T(i,j)=(1/k)*(((T(i+1,j)+T(i-1,j))/(dx)^2)+(T(i,j+1)+T(i,j-1))/(dy)^2);
end
end
error=max(max(abs(Told-T)));
% updating error term to next itervation
Told=T;
jacobi_iter=jacobi_iter+1;
contourf(x,y,T)
colorbar
xlabel(\'x axis\')
ylabel(\'y axis\')
title_text = sprintf(\'iteration number=%d\',jacobi_iter);
title(title_text)
drawnow
end
Plotting
here gauss methods take less iteration than Jacob, for the steady-state 2d heat equation
steady-state solving with sor on gauss
T(i,j)=(1−w)T+Tgs(w)
clear all
close all
clc
%(d^2(T)/dx^2+d^2(T)/dy^2)=0
% number of grid point in x direction
nx = 10;
% number of grid point in y direction
ny=nx;
x=linspace(0,1,nx); % 0 to 1 equal dirubuted values are 10 beacause nx is 10 size 1*10
y=linspace(0,1,ny);
% assign bouundary condition
T(ny,nx)=300*ones; % size arry 10*10 all value are 300kelivn
% all row 1 st column left 400
T(:,1)=400;
% all row last last column right 800
T(:,nx)=800;
% first row all column top 600 temp
T(1,:)=600;
% last row all column top 900 temp
T(nx,:)=900;
% corner points average
T(1,1)=(600+400)*0.5;
T(end,1)=(900+400)*0.5;
T(end,end)=(800+900)*0.5;
T(1,end)=(600+800)*0.5;
%copy of T
Told=T;
%omega;for sor
w=1.4;
% space between two point on x or y axis
dx=x(2)-x(1);
dy=y(2)-y(1);
k=(2/(dx)^2)+(2/(dy)^2);
% error
error=9e9;
%jacobi iterative solver
% till tolerance
tol=1e-4;
% convergence loop
% initial sor on gs
sor_gs_iter=1;
while (error>tol)
% space loop
for i=2:nx-1
for j=2:ny-1
T(i,j)=(T(i,j)*(1-w))+(w*((1/k)*(((T(i+1,j)+T(i-1,j))/(dx)^2)+(T(i,j+1)+T(i,j-1))/(dy)^2)));
end
end
error=max(max(abs(Told-T)));
% updating error term to next itervation
Told=T;
sor_gs_iter=sor_gs_iter+1;
contourf(x,y,T)
colorbar
xlabel(\'x axis\')
ylabel(\'y axis\')
title_text = sprintf(\'iteration number=%d\',sor_gs_iter);
title(title_text)
drawnow
end
Plotting
here less number of iteration than all other methods.
conclusion
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
Week 10 - Simulating Combustion of Natural Gas.
Combustion and reaction chemistry model Combustion and reaction chemistry model used in an internal combustion engine, gas turbine engine, rocket propulsion, gas flares, steel making, boilers, cement kilns, biomedical applications, fire safety, fuel cell, battery cell modelling, environment safe product…
05 Sep 2021 03:52 PM IST
Week 6 - CHT Analysis on a Graphics card
Video rendering card Video rendering card is responsible for accelerating the rendering of graphics on display. And it continuously takes electric energy and dissipates the heat energy like a hot heat sink. Also if heat dissipation is not managed the rendering processes may fail, reduce time to render or in the worst conditions…
23 Aug 2021 08:51 AM IST
Cyclone Separator Challenge
Aim To simulate anthracite particle-based cyclone separator with varying particle size from one micron to five microns with same particle velocity and inlet air velocity that is flow velocity, Also this particle velocity and flow velocity are varied from one to five with same five microns i.e. uniform particle size,…
31 Aug 2020 12:01 PM IST
simulation of Rayleigh Taylor Instability using ansys
Introduction In this Rayleigh – Taylor instability simulation the lighter fluids are above the lighter fluid and regime is accelerated by gravity. Also, phase between two fluids is marked H(x)/patch by 1 for heavier fluid and zero for lighter fluid. Rayleigh–Taylor instability…
28 May 2020 07:10 PM IST
Related Courses
0 Hours of Content
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.