All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
AIM The aim of this challenge is to simulate the hybrid vehicle model OBJECTIVES Simulation run of hybrid vehicle Increase the Vehicle mass by 50%. Increase the Drag coefficient by 5%. Comparison of the results HYBRID ELECTRIC VEHICLES A hybrid vehicle is one that uses two or more distinct types of power, such…
ANURAG M BHARADWAJ
updated on 10 Sep 2021
AIM
The aim of this challenge is to simulate the hybrid vehicle model
OBJECTIVES
HYBRID ELECTRIC VEHICLES
A hybrid vehicle is one that uses two or more distinct types of power, such as submarines that use diesel when surfaced and batteries when submerged. Other means to store energy include pressurized fluid in hydraulic hybrids.
The basic principle with hybrid vehicles is that the different motors work better at different speeds; the electric motor is more efficient at producing torque, or turning power, and the combustion engine is better for maintaining high speed (better than a typical electric motor). Switching from one to the other at the proper time while speeding up yields a win-win in terms of energy efficiency, as such that translates into greater fuel efficiency, for example.
The first mass-production parallel hybrid sold outside Japan was the 1st generation Honda Insight.
These types use a generally compact electric motor (usually <20 kW) to provide auto-stop/start features and to provide extra power assist[54] during the acceleration, and to generate on the deceleration phase (aka regenerative braking).
On-road examples include Honda Civic Hybrid, Honda Insight 2nd generation, Honda CR-Z, Honda Accord Hybrid, Mercedes Benz S400 BlueHYBRID, BMW 7 Series hybrids, General Motors BAS Hybrids, Suzuki S-Cross, Suzuki Wagon R and Smart fortwo with micro hybrid drive.
In a power-split hybrid electric drive train, there are two motors: a traction electric motor and an internal combustion engine. The power from these two motors can be shared to drive the wheels via a power split device, which is a simple planetary gear set. The ratio can be from 100% for the combustion engine to 100% for the traction electric motor, or anything in between. The combustion engine can act as a generator charging the batteries.
Modern versions such as the Toyota Hybrid Synergy Drive have a second electric motor/generator connected to the planetary gear. In cooperation with the traction motor/generator and the power-split device, this provides a continuously variable transmission.
On the open road, the primary power source is the internal combustion engine. When maximum power is required, for example, to overtake, the traction electric motor is used to assist. This increases the available power for a short period, giving the effect of having a larger engine than actually installed. In most applications, the combustion engine is switched off when the car is slow or stationary thereby reducing curbside emissions.
Passenger car installations include Toyota Prius, Ford Escape and Fusion, as well as Lexus RX400h, RX450h, GS450h, LS600h, and CT200h.
The BMW i3 with Range Extender is a production series-hybrid. It operates as an electric vehicle until the battery charge is low, and then activates an engine-powered generator to maintain power, and is also available without the range extender. The Fisker Karma was the first series-hybrid production vehicle.
When describing cars, the battery of a series-hybrid is usually charged by being plugged in - but a series-hybrid may also allow for a battery to only act as a buffer (and for regeneration purposes), and for the electric motor's power to be supplied constantly by a supporting engine. Series arrangements have been common in diesel-electric locomotives and ships. Ferdinand Porsche effectively invented this arrangement in speed-record-setting racing cars in the early 20th century, such as the Lohner-Porsche Mixte Hybrid. Porsche named his arrangement "System Mixt" and it was a wheel hub motor design, where each of the two front wheels was powered by a separate motor. This arrangement was sometimes referred to as an electric transmission, as the electric generator and driving motor replaced a mechanical transmission. The vehicle could not move unless the internal combustion engine was running.
In 1997 Toyota released the first series-hybrid bus sold in Japan. GM introduced the Chevy Volt series plug-in hybrid in 2010, aiming for an all-electric range of 40 mi (64 km), though this car also has a mechanical connection between the engine and drivetrain. Supercapacitors combined with a lithium ion battery bank have been used by AFS Trinity in a converted Saturn Vue SUV vehicle. Using supercapacitors they claim up to 150 mpg in a series-hybrid arrangement.
Nissan Note e-power is an example of a series hybrid technology since 2016 in Japan.
another subtype of hybrid vehicle is the plug-in hybrid electric vehicle. The plug-in hybrid is usually a general fuel-electric (parallel or serial) hybrid with increased energy storage capacity, usually through a lithium-ion battery, which allows the vehicle to drive on all-electric mode a distance that depends on the battery size and its mechanical layout (series or parallel). It may be connected to mains electricity supply at the end of the journey to avoid charging using the on-board internal combustion engine.
This concept is attractive to those seeking to minimize on-road emissions by avoiding – or at least minimizing – the use of ICE during daily driving. As with pure electric vehicles, the total emissions saving, for example in CO2 terms, is dependent upon the energy source of the electricity generating company.
For some users, this type of vehicle may also be financially attractive so long as the electrical energy being used is cheaper than the petrol/diesel that they would have otherwise used. Current tax systems in many European countries use mineral oil taxation as a major income source. This is generally not the case for electricity, which is taxed uniformly for the domestic customer, however that person uses it. Some electricity suppliers also offer price benefits for off-peak night users, which may further increase the attractiveness of the plug-in option for commuters and urban motorists.
Model File
The above model is the real vehicle representation of a hybrid electric vehicle.
Vehicle Body
A vehicle is a machine that transports people or cargo. Vehicles include wagons, bicycles, motor vehicles (motorcycles, cars, trucks, buses), railed vehicles (trains, trams), watercraft (ships, boats), amphibious vehicles (screw-propelled vehicle, hovercraft), aircraft (airplanes, helicopters, aerostat) and spacecraft.
Battery Management System
A battery management system (BMS) is any electronic system that manages a rechargeable battery (cell or battery pack), such as by protecting the battery from operating outside its safe operating area,monitoring its state, calculating secondary data, reporting that data, controlling its environment, authenticating it and / or balancing it. A battery pack built together with a battery management system with an external communication data bus is a smart battery pack. A smart battery pack must be charged by a smart battery charger.
Vehicle Body Characteristics
Aerodynamics Tab
Results
Vehicle Position Plot
This plot shows the vehicle position through different
Vehicle Speed Plot
External Vehicle body forces plot
Active State Plot
Engine Power Plot
Motor Torque plot
CONCLUSION
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
Hybrid Vehicle Case Study
AIM The aim of this challenge is to simulate the hybrid vehicle model OBJECTIVES Simulation run of hybrid vehicle Increase the Vehicle mass by 50%. Increase the Drag coefficient by 5%. Comparison of the results HYBRID ELECTRIC VEHICLES A hybrid vehicle is one that uses two or more distinct types of power, such…
10 Sep 2021 02:28 PM IST
Week 11: FSAE Car Project
AIM The aim is to simulate the Aerodynamics Behaviour of FSAE Car OBJECTIVE ABCD Racing company is looking to perform Aero Simulations for their FSAE vehicle and they have hired you to do the job. The suspension team wants a detailed report on the total downforce on individual components. They have two races in this…
29 Aug 2021 08:15 AM IST
Week 10: Modeling and Simulation of flow around an Ahmed Body
AIM The aim of this validation project is to simulate and validate the flow over an Ahmed Body OBJECTIVES Creating the CAD file for the Ahmed body Making of virtual wind tunnel for the car Simulating the case and validation of results with experimental values AHMED BODY The Ahmed body was described originally by…
22 Aug 2021 12:40 PM IST
Flow over an NACA 2412 Airfoil
AIM The aim of this project is to simulate the flow over a NACA 2412 Airfoil OBJECTIVES Plot Coefficient of drag vs angle of attack Plot Lift Coefficient vs angle of attack Comparison of turbulence model results AIRFOIL An airfoil (American English) or aerofoil (British English) is the cross-sectional shape…
04 Aug 2021 04:01 PM IST
Related Courses
0 Hours of Content
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.