Modified on
30 Sep 2022 06:25 pm
Skill-Lync
In Control System Engineering, the response of a system is analyzed for designing a suitable controller. The controller is needed to control the system behaviour as per requirements. As technology is moving toward automation, the role of sensors and actuators play a crucial role in any engineering field.
Sensors sense the system output and send the signal to the controller. The controller gives the command to the actuator so that the manipulated input to the system will be varied. In order to design a suitable controller for a system, the characteristics of the system need to be analyzed first. Hence, the system response will be studied either in the time domain or frequency domain.
The time domain graph depicts how the signal varies with respect to time. In this time-domain graph, the magnitude of the signal is represented at each instant time. If it is a continuous system, the signal will be represented as continuous. If it is a discrete system, the magnitude of the signal will be represented in distinct time intervals. The Cathode Ray Oscilloscope(CRO) device is the common device used to analyse the signal in a time domain.
The frequency domain graph shows how much of a signal lies within each frequency domain. Here in the frequency domain, the signal is represented by the sum of sinusoidal waves of different frequencies and each with a certain amplitude. Frequency domain analysis is very common in Control system Engineering. Thus, this refers to analyzing the signals with respect to the frequency of each signal.
In the time domain, the amplitude of the signal is plotted against the time and the frequency of the signal is untold. In the frequency domain, the amplitude of the signal is plotted against the frequency whereas how the signal varies with time is not given. Hence, each domain of signal representation provides us with different kinds of information about the same signal. Based on the objective, the analysis in one domain is advantageous over the other. The following methods are used to transform from the time domain to the frequency domain.
Signals, given in one domain, can be transformed to another domain using a mathematical transformation method called the Fourier formula (Fourier transform and Fourier series). Fourier stated that any signal in the time domain can be represented as a summation of sinusoidal waveforms of different frequencies. Sinusoidal waveforms are used because they do not change their shape when they pass through an LTI (Linear Time Invariant) system. x(t) is the signal in the time domain that can be transformed to the frequency domain by Fourier transform. It is given by,
Laplace transform decomposes the signals in the time domain into a domain of both sine and exponential functions. It is otherwise called an s-domain. The sine wave frequency wave is described by ω, and the amplitude is described by 𝛔. Therefore,
x(t) is the signal in the time domain that can be transformed to the frequency domain by Laplace transform and it is given by,
Unlike Fourier transform, Laplace transform gives information about the magnitude gain of a signal. Hence, the Laplace transform of the signal is used in control system analysis. The application of the Laplace transform makes a differential equation into an algebraic equation that is much easier to manipulate and to design a suitable compensator for systems. z-Transform is used for discrete systems. It is considered a discrete-time equivalent of the Laplace transform.
Author
Navin Baskar
Author
Skill-Lync
Subscribe to Our Free Newsletter
Continue Reading
Related Blogs
The average vehicle body gives any vehicle its structural integrity, while the electric motor is concerned with the generation of torque or force. The electric motor can be a permanent magnet synchronous motor, brushless dc motor etc.
25 Aug 2022
In industrial control applications, a PID controller is a device that regulates temperature, flow, pressure, speed, and other process variables. PID (proportional integral derivative) controllers, which use a control loop feedback mechanism to control process variables, are the most accurate and trustworthy controllers.
27 Aug 2022
A lithium-ion (Li-ion) battery is a complicated battery technology that uses lithium ions as a key component of its electrochemistry. During a discharge cycle, lithium atoms within the anode are ionized and separated from their electrons.
29 Aug 2022
Dash in your car is your source of information. It basically functions as a control panel that sits in front of the driver and shows numerous controls and instrumentation required for your car to function.
01 Sep 2022
A hybrid vehicle has two power sources for motion within the same vehicle. Basically the hybrid vehicle is split into two types supported the source for propulsion - combustion engine type and Hydrogen power cell.
07 Sep 2022
Author
Skill-Lync
Subscribe to Our Free Newsletter
Continue Reading
Related Blogs
The average vehicle body gives any vehicle its structural integrity, while the electric motor is concerned with the generation of torque or force. The electric motor can be a permanent magnet synchronous motor, brushless dc motor etc.
25 Aug 2022
In industrial control applications, a PID controller is a device that regulates temperature, flow, pressure, speed, and other process variables. PID (proportional integral derivative) controllers, which use a control loop feedback mechanism to control process variables, are the most accurate and trustworthy controllers.
27 Aug 2022
A lithium-ion (Li-ion) battery is a complicated battery technology that uses lithium ions as a key component of its electrochemistry. During a discharge cycle, lithium atoms within the anode are ionized and separated from their electrons.
29 Aug 2022
Dash in your car is your source of information. It basically functions as a control panel that sits in front of the driver and shows numerous controls and instrumentation required for your car to function.
01 Sep 2022
A hybrid vehicle has two power sources for motion within the same vehicle. Basically the hybrid vehicle is split into two types supported the source for propulsion - combustion engine type and Hydrogen power cell.
07 Sep 2022
Related Courses