All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
OBJECTIVE: To extract the data from stress-strain curve given for graphite cast iron. From the extracted data for various strain rates: Deduce the value of Elastic modulus. (E = 20.9 × 106 psi) Convert the data into Kg-mm-ms system of units. Process the data and create the material as demonstrated (Curve fitting…
Siddhartha Shekhar
updated on 06 Jul 2021
OBJECTIVE:
To extract the data from stress-strain curve given for graphite cast iron.
From the extracted data for various strain rates:
THEORY AND SOP FOR MATERIAL MODELLING USING RAW TEST DATA:
1. Test data:
Test data acquisition is done using "Get Data Digitizer" app, which could convert the graph image into data points and can export it into excdl format.
Graph 1- The graph for raw data from testing for three different strain rates.
2. Predicted data, Trendline equation and curve fitting.
Graph2 - Visual confirmation of plotted graph in excel with actual graph.
For x-y data, pl refer excel sheet "Data.xlsx. - Sheets(Test data)"
Linearity exist till strain = 0.001 or 0.1% strain.
2.1 Initial trendlines for each strain rate:
An initial trendline equation is formulated for graph plotted in excel using Raw test data for each strain rate saperately.
Strain rate 1
Trendline equation is a cubic polinomial which gives best RSQ value of 99%
Initial Trendline equation:
y = 10−7x3 - 6 × 10−5x2+ 0.0089x - 0.0173
Equation can be written as : y = C1x3 + C2x2 + C3x + C4
where,
C1 = 10−7
C2 = - 6 × 10−5
C3 = 0.0089
C4 = -0.0173
Strain rate 2
Trendline equation is a cubic polinomial which gives best RSQ value of 99%
Initial Trendline equation:
y = 5×10−7x3 - 10−4x2+ 0.0098x - 0.018
Equation can be written as : y = C1x3 + C2x2 + C3x + C4
where,
C1 = 5×10−7
C2 = - 10−4
C3 = 0.0098
C4 = - 0.018
Strain rate 3
Trendline equation is a linear relation which gives best RSQ value of 99%
Initial Trendline equation:
y = 0.0067x - 0.013
Equation can be written as : y = C1x+C2
where,
C1 = 0.0067
C2 = -0.013
2.2 Curve Fitting
3. Equidistant Strain values
From the equation we get from curve fitting, we get values of stress at strain values at equidistant intervals.
Here, interval is selected as per the curve fitting data.
4. 0.2% Offset
Yield point is very difficult to determine for a continuous curve. hence 0.2% offset strain method is used to get the shifted slope.
The intersection of this slope with origional curve gives the yield stress.
5. Calculation of effective plastic strain and corresponding stress from yield.
Effective plastic strain = Total true strain - (True stress/Youngs Modulus)
Effective plastic strains are calculated corresponding to the true stresses.
True stress values of first step is used for each step.(For metals)
LIST OF TABLES AND GRAPHS:
Graph 1- The graph for raw data from testing for three different strain rates.
Graph 2 - Visual confirmation of plotted graph in excel with actual graph.
Graph 3: Visual verification of Test data and simulation data for Effective stress Vs Effective plastic strain
Graph 4: Visual verification of Test data and simulation data for Effective stress Vs True strain
Table 1: Stress-strain data from test and predicted values of stress as per the trendline.
Table 2: The data containing optimized values for curve fitting. (Stress strain and optimized stress values)
Table 3: Constants of trendline equation before and after curve fitting.
Table 4: Effective stress corresponding to Effective plastic strain
Table 5: X-Y(Effective plastic Strain- effective stress) data to LS DYNA
Table 6: X-Y(Effective plastic Strain- effective stress) data from LS DYNA
Table 7: Verification for Youngs Modulus, Yield stress, Ultimate stress and Ultimate plastic strain.
CALCULATIONS AND STEPS IN DETAIL:
For Strain rate 1:
E is calculated using =Slope(Stress values, Strain values) = 21001866.3 psi
E = 21001866.3 psi
1 psi = 6894.76 Pa
1 Pa = 1/109 Kg/mm.ms2
i.e 21001866.3 psi = (21001866.3 × 6894.76)/109 Kg/mm.ms2
E = 144.8028277 Kg/mm.ms2
E = 144802.8277 MPa
Initial Trend line-
y = 10−7x3 - 6 × 10−5x2+ 0.0089x - 0.0173
C1 = 10−7
C2 = - 6 × 10−5
C3 = 0.0089
C4 = -0.0173
All values of strains from raw test data is put in initial trend line equation to get predicted values of stress.
Example:
Table 1: Stress-strain data from test and predicted values of stress as per the trendline.
Strain | Stress (Kg/mm.ms2) | Predicted Stress (Kg/mm.ms2) |
1.20897E-05 | 0.000713247 | -0.01729989 |
3.65188E-05 | 0.005002565 | -0.01729967 |
8.51897E-05 | 0.011434084 | -0.01729924 |
0.000121833 | 0.017868062 | -0.01729892 |
0.000170442 | 0.023583874 | -0.01729848 |
0.00020721 | 0.031449265 | -0.01729816 |
0.000255819 | 0.037165077 | -0.01729772 |
0.000292525 | 0.044314761 | -0.0172974 |
0.000353348 | 0.052175233 | -0.01729686 |
0.000438413 | 0.062177904 | -0.0172961 |
0.000487271 | 0.070756541 | -0.01729566 |
0.000536067 | 0.078619472 | -0.01729523 |
0.000572898 | 0.087200569 | -0.0172949 |
0.000657651 | 0.093624709 | -0.01729415 |
0.000706509 | 0.102203347 | -0.01729371 |
0.000755305 | 0.110066278 | -0.01729328 |
0.000804038 | 0.117213502 | -0.01729284 |
Calculation of R2
For stresses corresponding to Strain = 0.000170442
R2 = (0.0251474082 - 0.0235838742) = 2.44464E-06
Example
Table 2: The data containing optimized values for curve fitting.
Strain | Stress (Kg/mm.ms2) | Predicted Stress (Kg/mm.ms2) | Squared error |
1.20897E-05 | 0.000713247 | -0.01729989 | 0.000324473 |
3.65188E-05 | 0.005002565 | -0.01729967 | 0.00049739 |
8.51897E-05 | 0.011434084 | -0.01729924 | 0.000825604 |
0.000121833 | 0.017868062 | -0.01729892 | 0.001236716 |
0.000170442 | 0.023583874 | -0.01729848 | 0.001671367 |
0.00020721 | 0.031449265 | -0.01729816 | 0.002376311 |
0.000255819 | 0.037165077 | -0.01729772 | 0.002966197 |
0.000292525 | 0.044314761 | -0.0172974 | 0.003796058 |
0.000353348 | 0.052175233 | -0.01729686 | 0.004826371 |
0.000438413 | 0.062177904 | -0.0172961 | 0.006316117 |
0.000487271 | 0.070756541 | -0.01729566 | 0.007753191 |
0.000536067 | 0.078619472 | -0.01729523 | 0.00919963 |
0.000572898 | 0.087200569 | -0.0172949 | 0.010919303 |
0.000657651 | 0.093624709 | -0.01729415 | 0.012302993 |
0.000706509 | 0.102203347 | -0.01729371 | 0.014279547 |
0.000755305 | 0.110066278 | -0.01729328 | 0.016220456 |
0.000804038 | 0.117213502 | -0.01729284 | 0.018091957 |
Summation of Squared error:Similarly, Squared error is calculated for each step.
All R2 values are summed together to calculate SSR.
SSR = Sum(All R2 values) = 7.013600395
Curve is:
The above value of SSR is to be optimized to get the best fit.
It is done using SOlver add-in
Go to - Data tab >> Solver >> Solver Panel opens>> Enter values >> Solve.
Choose cell with SSR value for minimum value.
Choose constants (C1. C2, C3 and C4) values.
Choose a solving method - GRG Non linear.
Optimized SSR = 0.000370408
Fit curve:
Optimized values of Constants:
C1 | 1902063.588 |
C2 | 30468.62156 |
C3 | 174.0439469 |
C4 | 0.003641266 |
Optimized relation between, Stress and strain:
y = 1902063.588 x3 + 30468.62156 x2 + 174.0439469x + 0.003641266
Table 3: Constants of trendline equation before and after curve fitting:
BEFORE | AFTER |
C1 = 10−7 | C1 = 1902063.588 |
C2 = -5×10−5 | C2 = 30468.62156 |
C3 = 0.0089 | C3 = 174.0439469 |
C4 = -0.0176 | C4 = 0.003641266 |
SSR = 7.013600395 | SSR = 0.000370408 |
RSQ = 0.923691 | RSQ = 0.99964045 |
Equation: y = 10−7-5×x3 -5× 10−5x2+ 0.0089x -0.0176 |
Equation: y = 1902063.588x3 + 30468.621x2+ 174.043x + 0.99964045 |
RSQ is the percentage of curve fit.
Using the relation: y = 1902063.588x3 + 30468.621x2+ 174.043x + 0.99964045
For strain intervals- 0.0001 stress values are calculated.
Equidistant strain | Calculated stress (kg/mm.ms2) |
0 | 0 |
0.0001 | 0.017101611 |
0.0002 | 0.033605261 |
0.0003 | 0.049522364 |
0.0004 | 0.064864331 |
0.0005 | 0.079642576 |
0.0006 | 0.09386851 |
0.0007 | 0.107553546 |
0.0008 | 0.120709096 |
0.0009 | 0.133346573 |
0.001 | 0.145477389 |
0.0011 | 0.157112956 |
0.0012 | 0.168264687 |
0.0013 | 0.178943994 |
0.0014 | 0.18916229 |
0.0015 | 0.198930986 |
Curve:
Calculation of Yield stress:
0.2% strain is offseted and Stress is calculated by multiplying 'E' with strain.
Stress = 144.80 Kg/mm.ms2 × 0.0004 = 0.064864331 Kg/mm.ms2
An offset value is used to get the intersection.
Yield stress = 0.3456 Kg/mm.ms2
All calculate data:
Youngs Modulus | Yield Stress | Ultimate stress | ||||
Strain rate 1 | 144.8028277 GPa | 210 MPa | 377.752 MPa |
EFFECTIVE PLASTIC STRAIN CALCULATIONS.
Step1: True Stress and True strain at proportionality limit are tabulated.
Step2: All the values of true stress and strain are are tabulated after proportionality limit.
Step3: Effective plastic strain is calculated.
Effective plastic strain = Total True strain - (True Stress/ Youngs Modulus)
Step4: Corresponding values of effective plastic strain and effective stress are calculated.
Note: True stress is taken for first step only for every step because in metals, E is very large.
Table 4: Effective stress corresponding to Effective plastic strain
Equidistant strain | True stress (MPa) | Effective plastic strain | Effective stress |
0 | 0 | 0 | 0 |
0.001 | 141.8361233 | 0.00000 | 141.8361233 |
0.0011 | 153.4716905 | 0.00020 | 153.4716905 |
0.0012 | 164.6234215 | 0.00030 | 164.6234215 |
0.0013 | 175.3027286 | 0.00040 | 175.3027286 |
0.0014 | 185.5210243 | 0.00050 | 185.5210243 |
0.0015 | 195.2897208 | 0.00060 | 195.2897208 |
0.0016 | 204.6202307 | 0.00070 | 204.6202307 |
0.0017 | 213.5239662 | 0.00080 | 213.5239662 |
0.0018 | 222.0123398 | 0.00090 | 222.0123398 |
0.0019 | 230.0967638 | 0.00100 | 230.0967638 |
0.002 | 237.7886506 | 0.00110 | 237.7886506 |
0.0021 | 245.0994126 | 0.00120 | 245.0994126 |
0.0022 | 252.0404622 | 0.00130 | 252.0404622 |
0.0023 | 258.6232118 | 0.00140 | 258.6232118 |
0.0024 | 264.8590737 | 0.00150 | 264.8590737 |
0.0025 | 270.7594604 | 0.00160 | 270.7594604 |
0.0026 | 276.3357841 | 0.00170 | 276.3357841 |
0.0027 | 281.5994574 | 0.00180 | 281.5994574 |
0.0028 | 286.5618925 | 0.00190 | 286.5618925 |
0.0029 | 291.2345018 | 0.00200 | 291.2345018 |
0.003 | 295.6286978 | 0.00210 | 295.6286978 |
0.0031 | 299.7558928 | 0.00220 | 299.7558928 |
0.0032 | 303.6274992 | 0.00230 | 303.6274992 |
0.0033 | 307.2549294 | 0.00240 | 307.2549294 |
0.0034 | 310.6495958 | 0.00250 | 310.6495958 |
0.0035 | 313.8229106 | 0.00260 | 313.8229106 |
0.0036 | 316.7862864 | 0.00270 | 316.7862864 |
0.0037 | 319.5511355 | 0.00280 | 319.5511355 |
0.0038 | 322.1288703 | 0.00290 | 322.1288703 |
0.0039 | 324.5309032 | 0.00300 | 324.5309032 |
0.004 | 326.7686465 | 0.00310 | 326.7686465 |
0.0041 | 328.8535126 | 0.00320 | 328.8535126 |
0.0042 | 330.796914 | 0.00330 | 330.796914 |
0.0043 | 332.6102629 | 0.00340 | 332.6102629 |
0.0044 | 334.3049719 | 0.00350 | 334.3049719 |
0.0045 | 335.8924531 | 0.00360 | 335.8924531 |
0.0046 | 337.3841191 | 0.00370 | 337.3841191 |
0.0047 | 338.7913823 | 0.00380 | 338.7913823 |
0.0048 | 340.1256549 | 0.00390 | 340.1256549 |
0.0049 | 341.3983494 | 0.00400 | 341.3983494 |
0.005 | 342.6208782 | 0.00410 | 342.6208782 |
0.0051 | 343.8046536 | 0.00420 | 343.8046536 |
0.0052 | 344.9610881 | 0.00430 | 344.9610881 |
0.0053 | 346.1015939 | 0.00440 | 346.1015939 |
0.0054 | 347.2375836 | 0.00450 | 347.2375836 |
0.0055 | 348.3804694 | 0.00460 | 348.3804694 |
0.0056 | 349.5416637 | 0.00470 | 349.5416637 |
0.0057 | 350.732579 | 0.00480 | 350.732579 |
0.0058 | 351.9646277 | 0.00490 | 351.9646277 |
0.0059 | 353.249222 | 0.00500 | 353.249222 |
0.006 | 354.5977744 | 0.00510 | 354.5977744 |
0.0061 | 356.0216972 | 0.00520 | 356.0216972 |
0.0062 | 357.5324029 | 0.00530 | 357.5324029 |
0.0063 | 359.1413039 | 0.00540 | 359.1413039 |
0.0064 | 360.8598124 | 0.00550 | 360.8598124 |
0.0065 | 362.6993409 | 0.00560 | 362.6993409 |
0.0066 | 364.6713018 | 0.00570 | 364.6713018 |
0.0067 | 366.7871074 | 0.00580 | 366.7871074 |
0.0068 | 369.0581702 | 0.00590 | 369.0581702 |
0.0069 | 371.4959025 | 0.00600 | 371.4959025 |
0.007 | 374.1117166 | 0.00610 | 374.1117166 |
Yield is calculated at 0.02% offset for strain.
Effective plastic strain at Yield | Yield Stress | Plastic strain |
Strain Rate 1 | 210.304 MPa | 0.0015 |
Effective plastic strain at Failure | Ultimate Stress | Plastic strain |
Strain Rate 1 | 374.111 MPa | 0.00610 |
DATA IMPORT TO LS DYNA
For strain rate 1:
A curve is imported in LS DYNA using Define>>Curve>>X-Y data import
This curve defines the non linear region in LS DYNA as plastic region.
Linear part of curve is defined using the Young's Modulus.
E = 144000 MPa
v = 0.29
ρ = 7.1 × 10−6 Kg/mm3
SIGY = 210.304 MPa
FAIL = 0.00601
Table 5: X-Y(Effective plastic Strain- effective stress) data to LS DYNA
Effective plastic strain | Effective stress (MPa) |
0.00010 | 141.8361233 |
0.00020 | 153.4716905 |
0.00030 | 164.6234215 |
0.00040 | 175.3027286 |
0.00050 | 185.5210243 |
0.00060 | 195.2897208 |
0.00070 | 204.6202307 |
0.00080 | 213.5239662 |
0.00090 | 222.0123398 |
0.00100 | 230.0967638 |
0.00110 | 237.7886506 |
0.00120 | 245.0994126 |
0.00130 | 252.0404622 |
0.00140 | 258.6232118 |
0.00150 | 264.8590737 |
0.00160 | 270.7594604 |
0.00170 | 276.3357841 |
0.00180 | 281.5994574 |
0.00190 | 286.5618925 |
0.00200 | 291.2345018 |
0.00210 | 295.6286978 |
0.00220 | 299.7558928 |
0.00230 | 303.6274992 |
0.00240 | 307.2549294 |
0.00250 | 310.6495958 |
0.00260 | 313.8229106 |
0.00270 | 316.7862864 |
0.00280 | 319.5511355 |
0.00290 | 322.1288703 |
0.00300 | 324.5309032 |
0.00310 | 326.7686465 |
0.00320 | 328.8535126 |
0.00330 | 330.796914 |
0.00340 | 332.6102629 |
0.00350 | 334.3049719 |
0.00360 | 335.8924531 |
0.00370 | 337.3841191 |
0.00380 | 338.7913823 |
0.00390 | 340.1256549 |
0.00400 | 341.3983494 |
0.00410 | 342.6208782 |
0.00420 | 343.8046536 |
0.00430 | 344.9610881 |
0.00440 | 346.1015939 |
0.00450 | 347.2375836 |
0.00460 | 348.3804694 |
0.00470 | 349.5416637 |
0.00480 | 350.732579 |
0.00490 | 351.9646277 |
0.00500 | 353.249222 |
0.00510 | 354.5977744 |
0.00520 | 356.0216972 |
0.00530 | 357.5324029 |
0.00540 | 359.1413039 |
0.00550 | 360.8598124 |
0.00560 | 362.6993409 |
0.00570 | 364.6713018 |
0.00580 | 366.7871074 |
0.00590 | 369.0581702 |
0.00600 | 371.4959025 |
0.00610 | 374.1117166 |
Linearity terminates at 0.1% strain rate i.e E is to be calculated at strain = 0.001
Effective stress vs Effective plastic strain from LS Dyna data
Table 6: X-Y(Effective plastic Strain- effective stress) data from LS DYNA
Simulation | |
Effective Plastic strain | Effective stress (MPa) |
0.00000 | 0.00 |
0.00000 | 20.58 |
0.00000 | 41.14 |
0.00000 | 61.71 |
0.00000 | 82.27 |
0.00000 | 102.81 |
0.00000 | 122.99 |
0.00006 | 137.08 |
0.00014 | 146.84 |
0.00022 | 156.03 |
0.00030 | 165.00 |
0.00039 | 173.78 |
0.00047 | 182.39 |
0.00055 | 190.82 |
0.00064 | 199.07 |
0.00073 | 207.13 |
0.00082 | 215.00 |
0.00091 | 222.65 |
0.00100 | 230.10 |
0.00109 | 237.34 |
0.00119 | 244.36 |
0.00129 | 251.17 |
0.00139 | 257.76 |
0.00149 | 264.12 |
0.00159 | 270.24 |
0.00170 | 276.13 |
0.00180 | 281.79 |
0.00191 | 287.20 |
0.00203 | 292.37 |
0.00214 | 297.28 |
0.00226 | 301.94 |
0.00238 | 306.36 |
0.00250 | 310.53 |
0.00262 | 314.45 |
0.00275 | 318.13 |
0.00288 | 321.56 |
0.00301 | 324.77 |
0.00315 | 327.75 |
0.00329 | 330.50 |
0.00343 | 333.06 |
0.00357 | 335.43 |
0.00372 | 337.63 |
0.00387 | 339.69 |
0.00402 | 341.61 |
0.00417 | 343.45 |
0.00432 | 345.21 |
0.00447 | 346.95 |
0.00462 | 348.67 |
0.00477 | 350.40 |
0.00492 | 352.18 |
0.00506 | 354.02 |
0.00519 | 355.93 |
0.00529 | 170.61 |
0.00533 | 2.20 |
0.00533 | 2.13 |
0.00533 | 2.12 |
0.00533 | 2.11 |
0.00533 | 2.09 |
0.00533 | 2.07 |
0.00533 | 2.06 |
0.00533 | 2.08 |
0.00533 | 2.08 |
0.00533 | 2.08 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.08 |
0.00533 | 2.08 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.08 |
0.00533 | 2.08 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.08 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.07 |
0.00533 | 2.08 |
0.00533 | 2.07 |
0.00533 | 2.07 |
Graph 3: Visual verification of Test data and simulation data for Effective stress Vs Effective plastic strain
Calculations:
Youngs Modulus, E = 144000 MPa
Effective stress at linearity = 144000 × 0.001 = 144 MPa
Value closest to above stress from LS DYNA = 146.840 at strain = 0.00014
True strain = 0.001 + 0.00014 = 0.00114
So Youngs Modulus = 146.840/0.00114
E = 128807.89 MPa
Ultimate stress, U = 355.93 MPa
Ultimate plastic strain = 0.00519
Youngs Modulus | Ultimate stress | Ultimate plastic strain |
128807.89 MPa | 355.93 MPa | 0.00519 |
COMPARISON OF TEST DATA AND SIMULATED DATA.
Graph 4: Visual verification of Test data and simulation data for Effective stress Vs True strain
Test Data | Simulated data | |
Youngs Modulus (MPa) | 144802 | 128807.89 |
Yield Stress (MPa) | 210.304 (0.02% strain) | 225 (0.02% strain) |
Ultimate Stress (MPa) | 374.111 | 355.93 |
Ultimate Plastic strain | 0.00610 | 0.00519 |
Table 7: Verification for Youngs Modulus, Yield stress, Ultimate stress and Ultimate plastic strain.
LS DYNA Keywords:
*Control_Termination
T = 100ms
*Control_Hourglass
IHQ = 2
QH = 0.1
*Control_Energy
HGEN = 2
*Section_Shell
ELFORM = 2
Thickness = 1.5mm
*Mat_Piecewise_linear_plasticity_MAT_024
E = 144802 MPa
SIGY = 210.304 MPa
FAIL = 0.00610
v = 0.29
ρ = 7.1 × 10−6 Kg/mm3
LCSS = 1
Curve is defined above in Table5.
Displacement loading is defined as per below.
Time (ms) | Displacement (mm) |
0 | 0 |
100 | 1 |
101 | 1 |
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
Vehicle frontal crash for various cases - Simplified | FMVSS 208 Rigid Barrier, perpendicular, 100% Overlap at 56kmph. | ECE-R 94, Car to car frontal crash, 50% overlap at 50Kmph.
OBJECTIVE: To study the vehicle front crash. To understand the solver deck for this exercise. To understand the contacts, motion, and physics behind the vehicle crash. Output files associated with the practise. Correlation for Car crash with NCAP-36 load cell wall. DESIGN OF EXPERIMENT CASE 1: To understand…
20 Jul 2021 02:29 AM IST
Assignment 2-RADIOSS Engine File Editing & 3D Meshing Challenge
OBJECTIVE: 1. Perform Tetra mesh using Tetra4 elements for given housing Assembly. 2. Perform Hexa mesh using Hexa8 for given Arm bracket. 3. Perform calculations for stress wave propogation in steel rail and editing the RADIOSS Engine input file. TASK1: Tetra mesh using Tetra4 elements for given Housing Assembly:…
18 Jul 2021 01:25 AM IST
Assignment 1-2D Meshing Challenge
OBJECTIVE: For the given three parts, carry out the following: Geometry Clean-up Extracting the Midsurface Midsurface clean up Defeaturing the holes < 5mm 2D quad mesh with target element length 5mm Property assignement to assign thickness. PART1: Fig1: Imported Model. Geometry Clean-up fig2: Wireframe…
15 Jul 2021 10:24 PM IST
Solution of a load-displacement non linear relation for static analysis using Explicit and Implicit method in MS Excel using VBA programming
OBJECTIVE: For a given non linear relation between load and displcement where load is defined as a function of displacement. F(u) = u3 + 9u2 + 4u Solve the above relation for static analysis using Implicit and Explicit scheme. DESIGN OF EXPERIMENT: Loading is done in the increements of 1.0 N with…
14 Jul 2021 03:20 PM IST
Related Courses
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.