All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
Introduction Design Philosophy@ RCC Box Type Strucure 1 Description of structure Geometry Model The RCC box structure is modelled as a plane frame in Staad Pro software and the corresponding analysis is done 2 Design Standards Codes & Standard …
Md Nizamuddin Mondal
updated on 14 Aug 2023
|
||||||||
Design Philosophy@ RCC Box Type Strucure | ||||||||
1 | Description of structure | |||||||
Geometry Model | ||||||||
The RCC box structure is modelled as a plane frame in Staad Pro software and the corresponding analysis is done | ||||||||
2 | Design Standards | |||||||
Codes & Standard | ||||||||
The design of various components of the bridge, in general are based on provisions of IRC. | ||||||||
The list of IRC Codes( latest revisions) given below will serve as a guide for design of structure | ||||||||
IRC 005-2015 | Standard Specifications and Code of Practice for Road Bridges, Section I — General Features of Design | |||||||
IRC 006-2014 | Standard Specifications and Code of Practice for Road Bridges, Section-II Loads and Load Combinations | |||||||
IRC 112-2011 | Code of Practice for Concrete Road Bridges | |||||||
3 | Loading | |||||||
3.1 | Deal Load(DL) | |||||||
Unit weight for Dead Loads calcualtion has been considered by adopting unit weight as per IRC"6-2014 | ||||||||
Standard Specifications and Code of Practice for Road Bridges, Section-II Loads and Load Combinations | ||||||||
3.2 | Super-Imposed Deal Load(SIDL) | |||||||
Unit weight for Super-Imposed Deal Load shall be confirmity with IRC"6-2014 | ||||||||
Standard Specifications and Code of Practice for Road Bridges, Section-II Loads and Load Combinations | ||||||||
3.3 | Load due to Earth Pressure | |||||||
Static Earth Pressure has been considered to be acting on the vertical wall of the RCC Box. | ||||||||
Earth pressure co-efficient has been taken as 0.5 | ||||||||
3.4 | Carriage way Live load(CWLL) | |||||||
Live loads confirming to IRC 6-2011 have been considered in the anlysis of the RCC Box Structure and | ||||||||
Class of loading w1hichover produces the severe effect has been considered in the design. | ||||||||
Transverse dispersion through W/C has been considered. | ||||||||
Longitudinal dispersion through W/C and effective slab thckness has been considered as per IRC 112-2011 | ||||||||
3.5 | Live Load live load Surcharge | |||||||
The RCC box structure has been analysed considering a live load surcharge | ||||||||
equivalent to 1.2 metre height of Earthfill. | ||||||||
3.6 | Load due to Temperature Variation | |||||||
Uniform temperature as well as temperature gradient has been considered as per clause 215 of IRC 6. | ||||||||
3.6 | Load combination | |||||||
Load combination for limited given iAnnexture B of IRC 6 has been considered. | ||||||||
The following limit states are considered. | ||||||||
3.6.1 | Ultimate limit state(ULS) | |||||||
Under this limit state, | ||||||||
3.6.1.1 | Bending moment checked | |||||||
3.6.1.2 | Shear force checked | |||||||
3.6.2 | Serviceability limit state (SLS) | |||||||
Under this limit state:- | ||||||||
3.6.2.1 | Stress In concrete | |||||||
3.6.2.2 | Stress in Reinforcement | |||||||
3.6.2.3 | Crack width | |||||||
3.6.2.4 | Deflection | |||||||
4 | Structural Analysis: | |||||||
The analysis of the RCC box bridge has Modelled as a 2D structure in a Start Pro.The live load dispersion has been considered according to informative annexure B of IRC 112-2011 i.e. effective width methods. Since the box is fully resting on the soil, the basis support. Condition was simulated by providing discrete spring supports for the base slab. Soil springs stiffness has been calculated based on safe bearing capacity of soil. | ||||||||
5 | Durability and Maintenance considerations: | |||||||
5.1 | Concrete. | |||||||
Grade of concrete for RCC box. | = | M30 | ||||||
Grade of concrete for PCC works. | = | M15 | ||||||
5.2 | Reinforcement. | |||||||
HYSD bars. Grade Fe500D conforming to IS 1786 2008 and eight are provided as reinforcement. | ||||||||
5.3 | Clear cover. | |||||||
The minimum cover. 2 reinforcement has been determined from the recommendations of IRC:112-2011, taking into account the local environmental conditions. Following clear cover has been adopted for the various components:- | ||||||||
A structural component having faces in contract with Earth | = | 75 | mm | |||||
A structural component having faces not in contact with earth | = | 50 | mm | |||||
Foundation. | 75 | mm | ||||||
5.4 | Condition of exposure. | |||||||
Condition of exposure is taken as moderate | ||||||||
5.5 | Soil properties. | |||||||
For the soil used for the backfilling the density has been taken as 2.0 tonne/ m3 as far IRC:6-2011 | ||||||||
The SBC for the box structures has been taken as per sub - soil investigation report. | ||||||||
6 | Load cases. | |||||||
6.1 | Dry condition(No fill) | |||||||
Load case. | Title. | |||||||
1 | Self weight | |||||||
2 | Super impose load due to wearing code. +UDL due to profile correction course. | |||||||
3 | Earth pressure at rest. | |||||||
4 | Live load on top 70 a truck.(2 lane and 4 lane. ) | |||||||
5 | Live load on top (40 tonne Bogie) (2 lane and 4 Lane.) | |||||||
6 | Live load surcharge both sides. | |||||||
7 | Live load surcharge left side. | |||||||
8 | Live load surcharge right side. | |||||||
9 | Braking force left side. | |||||||
10 | Braking force right side. | |||||||
11 | Uniform temperature rise. | |||||||
12 | Uniform temperature fall. | |||||||
13 | Temperature gradient rise. | |||||||
14 | Temperature gradient fall. | |||||||
15 | Live load on top( class AA tracked). 02 Lane and 4 Lane) | |||||||
16 | Paver load as suggested by client. | |||||||
Ultimate limit state | ||||||||
For checking capacity of section for flexure and shear, basic combination is used. | ||||||||
Serviceability limit state | ||||||||
For checking stresss in concrete and reinforcement. Rare combination is used. | ||||||||
For Checking cracked width,Quasi-, permanent is used. | ||||||||
Deflection is checked for live load only as per clause 12.4 of IRC: 112 -2011 |
Cross-Section View
Design of single cell box structure of 12.00 metre x 5.50 metre with Cushion(H=1.0 m) | ||||||||||||||||
1 | Design data. | |||||||||||||||
No of Cells | = | 1.00 | No | |||||||||||||
Clear span. ( Skew) | = | 12.00 | m | |||||||||||||
Clear spn. ( Sq) | = | 12.00 | m | |||||||||||||
Clear height at outer edge | = | 5.50 | m | |||||||||||||
Clear height at median edge | = | 5.50 | m | |||||||||||||
Skew angle | = | - | o | |||||||||||||
width of Box | = | 12.50 | m | |||||||||||||
carriage Width | = | 11.50 | m | |||||||||||||
Width of Crash barrier | = | 0.50 | m | |||||||||||||
Width of footpath/Safety kerb | = | 0.50 | m | |||||||||||||
Width of Hunch | = | 0.15 | m | |||||||||||||
Depth of Hunch | = | 0.15 | m | |||||||||||||
Thickness of Wearing Coat | = | - | m | |||||||||||||
Thickness of profile correction course(PCC) | = | - | m | |||||||||||||
Thickness of wearing coat + profile correction course | = | - | m | |||||||||||||
thickness of fill over top slab excluding wearing coat | = | 1.00 | m | |||||||||||||
Depth of Top slab | = | 0.85 | m | |||||||||||||
Depth of Bottom Slab | = | 0.90 | m | |||||||||||||
Depth of External Vertical wall | = | 0.90 | m | |||||||||||||
Safe Bearinfg Capcity | = | 120.00 | kN/m2 | |||||||||||||
Allowable Settlement | = | 75.00 | mm | |||||||||||||
Spring Constant | = | 1,600.00 | kN/m3 | |||||||||||||
Density of Concrete | = | 25.00 | kN/m3 | |||||||||||||
Bulk Density of Soil | = | 20.00 | kN/m3 | |||||||||||||
Density of Submerged Soil | = | 10.00 | kN/m3 | |||||||||||||
Density of Profile corrective course | = | 25.00 | kN/m3 | |||||||||||||
Density of Fill | = | 20.00 | kN/m3 | |||||||||||||
Co-efficient of earth pressure at rest | = | 0.50 | ||||||||||||||
Maximum air shade temperature | = | 45.00 | oC | |||||||||||||
Minimum air temperature | = | 10.00 | oC | |||||||||||||
Maxumum liv eload on box for braking force calcualtion | = | 700.00 | kN | |||||||||||||
1.1 | Design Parameters | |||||||||||||||
Grade of concrete. | = | M30 | m | |||||||||||||
Grade of steel. | = | Fe500 | m | |||||||||||||
Clear cover for earth face structural component. | = | 75.00 | mm | |||||||||||||
Clear cover for inside face structural component. | = | 50.00 | mm | |||||||||||||
Clear cover for foundation. | = | 75.00 | mm | |||||||||||||
1.2 | Data for Staad input | = | m | |||||||||||||
No of division of Bottom Slab | = | 10.00 | ||||||||||||||
2 | Load Calcualtions | = | m | |||||||||||||
2.1 | Dead Load | = | m | |||||||||||||
Self weight of the structure has been calculated directly. Start profile in Staad file by the comment ''Self-Weight" | = | m | ||||||||||||||
2.2 | Superimposed dead load. | = | m | |||||||||||||
Thickness of Wearing+ profile correction course | = | - | m | |||||||||||||
Load(UDL) on top slab | = | (0*25) | = | - | kN/m | |||||||||||
Height of Fill | = | (1*20) | = | 20.00 | kN/m | |||||||||||
= | 20.00 | kN/m | ||||||||||||||
Total SIDL on the top slab | = | m | ||||||||||||||
2.3 | Earth Pressure | = | m | |||||||||||||
= | m | |||||||||||||||
Thickness of Top Slab | = | 0.85 | m | |||||||||||||
height of top Hunch | = | 0.15 | m | |||||||||||||
Clear Height between top and bottom slab | = | 5.50 | m | |||||||||||||
Height of Bottom Hunch | = | 0.15 | m | |||||||||||||
Thickness of Botto Slab | = | 0.90 | m | |||||||||||||
height from top of cushion Top (m) |
Intensity of Earth pressure(kN/m2) | |||||||||||||||
1.43 | 1.43 | (0.5*1.425*20) | = | 14.25 | m | |||||||||||
0.43 | 1.85 | (0.5*1.85*20) | = | 18.50 | m | |||||||||||
0.15 | 2.00 | (0.5*2*20) | = | 20.00 | m | |||||||||||
5.20 | 7.20 | (0.5*7.2*20) | = | 72.00 | m | |||||||||||
0.15 | 7.35 | (0.5*7.35*20) | = | 73.50 | m | |||||||||||
0.45 | 7.80 | (0.5*7.8*20) | = | 78.00 | m | |||||||||||
2.4 | Live Load surcharge | |||||||||||||||
Equivalent heigth | = | 1.20 | m | |||||||||||||
Uniform Intensity of Loading | =(1.2*20*0.5) | Cl.214.1.1.3,Fig3,IRC6-2014 | = | 12.00 | kN/m2 | |||||||||||
2.5 | Braking Force | = | m | |||||||||||||
Max. Live Load on Box for 2 lane | = | 700.00 | kN | |||||||||||||
Width of the box | = | 12.50 | m | |||||||||||||
Braking load | =(20%+5% of *700)/12.5 | Cl.211.2(a),IRC6-2014 | = | 14.00 | m | |||||||||||
2.6 | Temperature | = | m | |||||||||||||
Maximum Effective bridge temperature | As per Cl.215.2 ,IRC:6-2014 | (45-10)>20,(45+10)/2+10 | = | 37.50 | oC | |||||||||||
Minimum Effective bridge temperature | As per Cl.215.2 ,IRC:6-2015 | (45-10)<20> | = | 17.50 | oC | |||||||||||
Maximum uniform raise of temperature | 45-17.5 | = | 27.50 | oC | ||||||||||||
Minimum uniform raise of temperature | 10-37.5 | = | -27.50 | oC | ||||||||||||
2.7 | UDL due to eccentricity of Live Load | |||||||||||||||
length of Box | =(12+0.9*0.5) | = | 13.80 | m | ||||||||||||
Width of the Box | = | 12.50 | m | |||||||||||||
Section Modulus of Box transverse | =(13.8*12.5^2)/6 | = | 359.38 | m3 | ||||||||||||
Section Modulus of Box longitudinal | =(12.5*13.8^2)/6 | = | 396.75 | m3 | ||||||||||||
1 No 70R Tracked | = | m | ||||||||||||||
Carriage live load | = | 700.00 | kN | |||||||||||||
Transverse eccentricity of live eload | =(12.5/2)-0.5-1.2-2.9/2) | = | 3.10 | m | ||||||||||||
Transverse Moment | =(700*3.1) | = | 2,170.00 | kN-m | ||||||||||||
Udl due to Eccentricity of CWLL | =(2170/359.375) | = | 6.04 | kN/m | ||||||||||||
Longitudinal eccentricity of live eload | =((12+0.9)-6.27)/2 | = | 3.31 | m | ||||||||||||
Longitudinal Moment | =(700*3.305) | = | 2,313.50 | kN-m | ||||||||||||
Udl due to Eccentricity of CWLL | =(2313.5/396.75) | = | 5.83 | kN/m | ||||||||||||
3 | Live Load Calculation | = | m | |||||||||||||
Design data. | ||||||||||||||||
No of Cells | = | 1.00 | No | |||||||||||||
Clear span. ( Skew) | = | 12.00 | m | |||||||||||||
Clear spn. ( Sq) | = | 12.00 | m | |||||||||||||
Clear height at outer edge | = | 5.50 | m | |||||||||||||
Clear height at median edge | = | 5.50 | m | |||||||||||||
Skew angle | = | - | o | |||||||||||||
width of Box | = | 12.50 | m | |||||||||||||
carriage Width | = | 11.50 | m | |||||||||||||
Width of Crash barrier | = | 0.50 | m | |||||||||||||
Width of footpath/Safety kerb | = | 0.50 | m | |||||||||||||
Width of Hunch | = | 0.15 | m | |||||||||||||
Depth of Hunch | = | 0.15 | m | |||||||||||||
Thickness of Wearing Coat | = | - | m | |||||||||||||
Thickness of profile correction course(PCC) | = | - | m | |||||||||||||
Thickness of wearing coat + profile correction course | = | - | m | |||||||||||||
thickness of fill over top slab excluding wearing coat | = | 1.00 | m | |||||||||||||
Depth of Top slab | = | 0.85 | m | |||||||||||||
Depth of Bottom Slab | = | 0.90 | m | |||||||||||||
Depth of External Vertical wall | = | 0.90 | m | |||||||||||||
As per IRC:6-2014 | ||||||||||||||||
For 20 tonne Boggie Load L-type | ||||||||||||||||
Clear Distance from the kerb | = | 1.20 | m | |||||||||||||
Width of track Transverse to traffic direction) | = | 0.86 | m | |||||||||||||
Width of track along traffic direction) | Cl.204.1,IRC:6-2014 | = | 0.263 | m | ||||||||||||
Total Width of Vehicle | = | 2.79 | m | |||||||||||||
Width centre to centre of wheel | (2.79-0.86/2-0.86/2) | = | 1.93 | m | ||||||||||||
For 70R-Tracked | ||||||||||||||||
= | ||||||||||||||||
Clear Distance from the kerb | = | 1.20 | m | |||||||||||||
Width of track Transverse to traffic direction) | Cl.204.1, Fig-1,IRC:6-2014 | = | 0.84 | m | ||||||||||||
Width of track along traffic direction) | Cl.204.1, Fig-1,IRC:6-2014 | = | 4.570 | m | ||||||||||||
Total Width of Vehicle | Cl.204.1, Fig-1,IRC:6-2014 | = | 2.90 | m | ||||||||||||
Width centre to centre of wheel | (2.9-0.84) | = | 2.06 | m | ||||||||||||
For Class AA-Tracked | ||||||||||||||||
Clear Distance from the kerb | = | 1.20 | m | |||||||||||||
Width of track Transverse to traffic direction) | Cl.204.1, Fig-1,IRC:6-2014 | = | 0.85 | m | ||||||||||||
Width of track along traffic direction) | Cl.204.1, Fig-1,IRC:6-2014 | = | 3.600 | m | ||||||||||||
Total Width of Vehicle | Cl.204.1, Fig-1,IRC:6-2014 | = | 2.90 | m | ||||||||||||
Width centre to centre of wheel | (2.9-0.85) | = | 2.05 | m | ||||||||||||
For 40 tonne Boggie Load L-type | ||||||||||||||||
Impact factor | = | 25% | ||||||||||||||
Effective Dispersion width:- | = | |||||||||||||||
For Along the traffic direction | = | |||||||||||||||
Dispersion of loads through fills and wearing coat(at Angle 45o) | = | |||||||||||||||
beff | = | bt+2(wc+d+s) | = | |||||||||||||
Where | = | |||||||||||||||
bt | = | Tyre width along traffic flow | = | 0.263 | m | |||||||||||
wc | = | Wearing coat thickness | = | - | m | |||||||||||
d | = | Effective deck Slab | = | 0.85 | m | |||||||||||
s | = | Depth of soil above box | = | 1.00 | m | |||||||||||
Dispersion width alon traffic | beff | = | 3.963 | m | ||||||||||||
For perpendicular of the traffic direction | ||||||||||||||||
beff | = | k*x(1-x/lo)+b1 | ||||||||||||||
Where | ||||||||||||||||
k | = | Constant depending on b/lo | Table 4.6,IRC:112-2011(Annexure-B3) | = | 2.627 | |||||||||||
lo | = | effective span | = | 12.90 | ||||||||||||
x | = | Distance of centre of gravity of load from nearest support | (10.7-1.22)/2 | = | 5.84 | m | ||||||||||
x | = | Width of track along traffic direction) | `/2 | 0.263/2 | = | 0.132 | m | |||||||||
wc | = | Wearing coat thickness | = | - | m | |||||||||||
bt | = | tyre width across traffic flow | = | 0.86 | m | |||||||||||
b1 | = | width of tyre(bt)+2*(thickness of wearing coat or finish surface above the slab) | 0.86+2*1.1 | = | 3.06 | m | ||||||||||
b | = | Width of box | = | 12.50 | m | |||||||||||
Dispersion width alon traffic, for max moment case | beff | = | 11.457 | m | ||||||||||||
Dispersion width alon traffic, for max vertical load case | beff | = | 3.402 | m |
For 70R -Tracked | |||||||||||||||
Impact Factor | = | 10% | |||||||||||||
Effective Dispersion width:- | = | ||||||||||||||
For Along the traffic direction | = | ||||||||||||||
Dispersion of loads through fills and wearing coat(at Angle 45o) | = | ||||||||||||||
beff | = | bt+2(wc+d+s) | = | ||||||||||||
Where | = | ||||||||||||||
bt | = | Tyre width along traffic flow | = | 4.570 | m | ||||||||||
wc | = | Wearing coat thickness | = | - | m | ||||||||||
d | = | Effective Depth of Deck Slab | = | 0.85 | m | ||||||||||
s | = | Depth of soil above box | = | 1.00 | m | ||||||||||
Dispersion width alon traffic | beff | = | 8.270 | m | |||||||||||
For perpendicular of the traffic direction | |||||||||||||||
beff | = | k*x(1-x/lo)+b1 | |||||||||||||
Where | |||||||||||||||
k | = | Constant depending on b/lo | Table 4.6,IRC:112-2011(Annexure-B3) | = | 2.627 | ||||||||||
lo | = | effective span | = | 12.90 | |||||||||||
x | = | Distance of centre of gravity of load from nearest support | (10.7)/2 | = | 6.45 | m | |||||||||
x | = | Tracked width | `/2 | 0.263/2 | = | 2.285 | m | ||||||||
wc | = | Wearing coat thickness | = | - | m | ||||||||||
bt | = | tyre width across traffic flow | = | 0.84 | m | ||||||||||
b1 | = | width of tyre(bt)+2*(thickness of wearing coat or finish surface above the slab) | 0.86+2*1.1 | = | 2.84 | m | |||||||||
b | = | Width of box | = | 12.50 | m | ||||||||||
Dispersion width alon traffic, for max moment case | beff | = | 11.313 | m | |||||||||||
Dispersion width alon traffic, for max vertical load case | beff | = | 7.780 | m |
Maximum Moment Case |
Longitudinal Dispersion | = | 8.27 | m |
Tranverse dispersion | = | 9.34 | m |
Udl due to Live load( Load intencity) | = | 9.97 | Kn/m2 |
Max.Vertical Load case |
Longitudinal Dispersion | = | 6.27 | m |
Tranverse dispersion | = | 7.57 | m |
Udl due to Live load( Load intencity) | = | 16.22 | Kn/m2 |
Calcualtion of Temperature Gradient in Top Slab |
Temperature Rise Case:- |
The top slab is designed for the effects of the distribution of the temperature across the deck depth as given in the sketch below:- |
Depth of Super-structure | h | = | 0.85 | m | |||
Parameter | = | ||||||
Grade of Cocnrere | M | = | 30.00 | ||||
Elastricity for Concrete | E1 | = | 3.10E+06 | T/m2 | |||
Modified Elastricity for concrete' | Ec=E1 | = | 3.10E+06 | T/m2 | |||
Co-efficient of Thermal Expansion | a | = | 1.20E-05 | /oC | |||
Output | |||||||
Stress | = | E.a.t | |||||
Force | = | F1+F2+F3 | |||||
Moment | = | F1*x1+F2*x2-F3*x3 |
Temperature Rise Case:- | |||||||||||||||
Members Description | h | h1 | h2 | h3 | T1 | T2 | T3 | h1 | 0.3h<0> | Which is minimum | |||||
(m) | (m) | (m) | (m) | oC | oC | oC | h2 | 0.1<0>0.25 | Which is minimum | ||||||
Top Slab | 0.85 | 0.15 | 0.18 | 0.15 | 17.8 | 4 | 2.1 | h3 | 0.3h<0> | Which is minimum | |||||
Members Description | E.a.t S1 |
E.a.t S2 |
E.a.t S3 |
F1 | F2 | F3 | F | ||||||||
(T/m2) | (T/m2) | (T/m2) | (T) | (T) | (T) | (T) | |||||||||
Top Slab | 662.16 | 148.80 | 78.12 | 60.822 | 13.392 | 5.859 | 80.073 |
Members Description | CG of Section from Top | CG of Section from bottom | CG of top Block from Top | CG of Mid Block from Top | CG of bottom Block from bottom | X1 | X2 | X3 | M | ||
m | m | m | T-m | ||||||||
Top Slab | 0.425 | 0.425 | 0.0592 | 0.2100 | 0.0500 | 0.366 | 0.215 | 0.375 | 22.93 |
Temperature fall Case:- |
Depth of Super-structure | h | = | 0.85 | m | |||
Parameter | = | - | |||||
Grade of Cocnrere | M | = | 30.00 | ||||
Elastricity for Concrete | E1 | = | 3.10E+06 | T/m2 | |||
Modified Elastricity for concrete' | Ec=E1 | = | 3.10E+06 | T/m2 | |||
Co-efficient of Thermal Expansion | a | = | 1.20E-05 | /oC | |||
Output | |||||||
Stress | = | E.a.t | |||||
Force | = | F1+F2+F3+F4 | |||||
Moment | = | F1*x1+F2*x2-f3*x3-F4*x4 |
Members Description | h | h1 | h2 | h3 | h4 | T1 | T2 | T3 | T4 | h1=h4 | 0.2h<0> | Which is minimum | ||
(m) | (m) | (m) | (m) | (m) | oC | oC | oC | oC | h2=h3 | 0.25h<0> | Which is minimum | |||
Top Slab | 0.85 | 0.17 | 0.213 | 0.21 | 0.17 | 10.6 | 0.7 | 0.8 | 6.6 | |||||
Members Description | E.a.t S1 |
E.a.t S2 |
E.a.t S3 |
E.a.t S4 |
F1 | F2 | F3 | F4 | F | |||||
(T/m2) | (T/m2) | (T/m2) | (T/m2) | (T) | (T) | (T) | (T) | (T) | ||||||
Top Slab | 394.32 | 26.04 | 29.76 | 245.52 | 35.73 | 2.76675 | 3.16 | 23.40 | 65.06 | |||||
Members Description | CG of Section from Top | CG of Section from bottom | CG of top Block from Top | CG of Mid Block from Top | CG of Mid Block from bottom | CG of bottom Block from bottom | X1 | X2 | X3 | X4 | M | |||
m | m | m | m | T-m | ||||||||||
Top Slab | 0.425 | 0.425 | 0.0602 | 0.2408 | 0.2408 | 0.0628 | 0.365 | 0.184 | 0.184 | 0.362 | 4.49 |
Result for 1 m fill above the deck |
Bending Moment Envelope |
MZ-top : 801.03 kN-m
MZ-Bottom : 0.00 kN-m
MZ-top : 311.118 kN-m
MZ-Bottom : 667.506 kN-m
Diagram :-
3.(b). 1 m fill on top of the Bridge:
Bottom Slab Only:
Max.Bending Moment values with diagram:
Mid location:
MZ top : 641.2 kN-m
MZ bottom : 0 kn-m
Support Location:
MZ top : 287.2 kN-m
MZ bottom : 422.71 knN-m
Bottom Slab Only:
Max.Shear force values with diagram:
Mid location:
Fy : 0 kN
Support Location:
Fy : 389 kN
3.(a). 5 m fill on top of the Bridge:
Bottom Slab Only:
Max.Bending Moment values with diagram:
Mid location:
MZ top : 1.5E+03 kN-m
MZ bottom : 0 kn-m
Support Location:
MZ top : 694.22 kN-m
MZ bottom : 927.9 knN-m
Bottom Slab Only:
Max.Shear force values with diagram:
Mid location:
Fy : 0 kN
Support Location:
Fy : 884.55 kN
Bottom Slab Calculation:
Simple Calculation For Member | ||||||||||||||||||||||
Model Calcualtionvfor Member | 9,10 | |||||||||||||||||||||
Maximum Bending Moment under Basic Combination | = | 801.03 | kN-m | |||||||||||||||||||
Maximum Shear Force | VNS | = | 389.31 | kN | ||||||||||||||||||
Depth of member | D | = | 850.00 | mm | ||||||||||||||||||
Width of Member | b | = | 1000 | mm | ||||||||||||||||||
Grade of Concrete | = | M 30 | ||||||||||||||||||||
Grade ofSteel | = | Fe 500 | ||||||||||||||||||||
Characteristic strength of concrete | fck | = | 30 | Mpa | ||||||||||||||||||
Characteristic strength of Steel | fy | = | 500 | Mpa | ||||||||||||||||||
tensile Strength of Concrete | fctm | = | 2.50 | Mpa | ||||||||||||||||||
Design Yield strength of shear reinforcement | fywd | = | 348 | Mpa | ||||||||||||||||||
Partial safety factor for concrete | gm | = | 1.5 | Basic | ||||||||||||||||||
Partial safety factor for Steel | gs | = | 1.15 | Basic | ||||||||||||||||||
Ultimate concrete strain in the concrete | <!-- [if gte vml 1]>![]() |
= | 0.0035 | |||||||||||||||||||
Modulus of Elasticity of reinforcing of steel | Es | = | 2.00E+05 | |||||||||||||||||||
Modulus of Elasticity of Concrete | Ecm | = | 3.10E+04 | |||||||||||||||||||
Moduler Ratio (Es/Ecm) | <!-- [if gte vml 1]>
|
= | 6.45 | |||||||||||||||||||
Long term Moduler Ratio (Es/Ecm) | = | 12.90 | ||||||||||||||||||||
Ultimate tensile strain in the steel | = | 2.17E-03 | ||||||||||||||||||||
Co-efficient to consider the influence of the concrete strength | a | = | 0.67 | Cube | ||||||||||||||||||
Factor | 𝜆 | = | 0.8 | |||||||||||||||||||
0.8 up to fck<= 60Mpa, Eq.A2-33;IRC:112-2011;0.8-((fck-60)/500) for 60 | ||||||||||||||||||||||
Factor | = | 1 | ||||||||||||||||||||
1.0 up to fck<= 60Mpa, Eq.A2-35;IRC:112-2011;0.8-((fck-60)/250) for 60 | ||||||||||||||||||||||
Design value of concrete compressive strength | fcd | = | 13.4 | |||||||||||||||||||
Factor | <!-- [if gte vml 1]>
|
Fav | = | 10.72 | ||||||||||||||||||
Factor | β | = | 0.4 | |||||||||||||||||||
Effective depth of the member | d | = | 790.00 | mm | ||||||||||||||||||
Kav=M/bd2*Fav | Kav | = | 0.120 | |||||||||||||||||||
Limiting Neutral axis depth | Xu,lim | = | 487.32 | |||||||||||||||||||
Xu,lim/d | = | 0.617 | ||||||||||||||||||||
We Know | = | |||||||||||||||||||||
Compressive Force= Tensile Force | = | |||||||||||||||||||||
fy*Ast/gs=Fav*x*b | = | |||||||||||||||||||||
Ast | = | Fav*x*b*gs/fy | = | |||||||||||||||||||
Moment | = | fy*Ast/gs)*(d-𝜆*x/2) | ||||||||||||||||||||
M | = | Fav*x*b*(d-βx) | ||||||||||||||||||||
M/Fav*b | = | x*(d-βx) | <!-- [if gte vml 1]>![]() |
|||||||||||||||||||
74722.948 | = | x*(545-0.4x) | x/d | = | ||||||||||||||||||
x/d | 0.126 | Ok | ||||||||||||||||||||
x | = | 99.61 | Ok | |||||||||||||||||||
Required Reinforcement | Ast | = | 2,473.07 | |||||||||||||||||||
provided Reinforcement | ||||||||||||||||||||||
20 mm Dia. of Bar | Spacing @ | 200 mm c/c | Ast,provd | = | 3,141.59 | |||||||||||||||||
Neutral Axis depth | x | = | 126.54 | Ok | ||||||||||||||||||
Limiting Neutral axis depth | Xu,lim | = | 487.318 | |||||||||||||||||||
Xu,lim/d | = | 0.617 | ||||||||||||||||||||
Limiting Moment | Rlim | = | M/bd2 | Rlim | = | 5.02 | ||||||||||||||||
Required Effective depth | deff.required | = | 399.53 | |||||||||||||||||||
Provided Effective depth | deff.provided | = | 790.00 | Ok |
ULS Strength Check:
ULS | ||||||||||||||||
issue | ||||||||||||||||
Section | Face | Mdes(kN.m) | Depth of NA(mm) | Deff.reqd. (mm) |
Doverall provd. (mm) |
Deff.provd. (mm) |
Ast.reqd. (mm2/m) |
Bar Mark | Dia. Of Bar | Spacing | Bar Mark | Dia. Of Bar | Spacing | Ast.Provd. (mm2/m) |
<!-- [if gte vml 1]>![]()
|
|
Top | 77.61 | - | 600 | 542 | - | ts1 | 16 | 200 | ts7 | - | 200 | 1,005 | 0.17 | |||
Btm. | 118.38 | - | 600 | 540 | - | ts3 | 20 | 200 | ts6 | 16 | 200 | 2,576 | 0.43 | |||
Top | 134.18 | - | 600 | 538 | - | w1 | 25 | 200 | ts1 | 16 | 200 | 3,460 | 0.58 | |||
Btm. | 94.97 | - | 600 | 540 | - | ts3 | 20 | 200 | - | - | 200 | 1,571 | 0.26 | |||
Outside | 144.54 | - | 700 | 613 | - | w1 | 25 | 200 | ts1 | 16 | 200 | 3,460 | 0.49 | |||
Inside | 85.00 | - | 700 | 642 | - | w2 | 16 | 200 | w5 | - | 200 | 1,005 | 0.14 | |||
Outside | 124.34 | - | 700 | 613 | - | w1 | 25 | 200 | - | - | 200 | 2,454 | 0.35 | |||
Inside | 116.74 | - | 700 | 642 | - | w2 | 16 | 200 | w5 | 16 | 200 | 2,011 | 0.29 | |||
Outside | 124.34 | - | 700 | 613 | - | w1 | 25 | 200 | bs3 | - | 200 | 2,454 | 0.35 | |||
Inside | 85.00 | - | 700 | 642 | - | bs1 | 16 | 200 | - | - | 200 | 1,005 | 0.14 | |||
3,4 | Top | 101.97 | - | 700 | 615 | - | bs1 | 20 | 200 | - | - | 200 | 1,571 | 0.22 | ||
Btm. | 667.506 | 144.54 | 364.71 | 700 | 613 | 2,718.37 | w1 | 25 | 200 | bs3 | 16.00 | 200 | 3,460 | 0.49 | ||
9,10 | Top | 801.03 | 154.27 | 399.53 | 700 | 613 | 3,318.56 | bs1 | 25 | 200 | bs5 | 20.00 | 200 | 4,025 | 0.58 | |
Btm. | 83.21 | - | 700 | 617 | - | bs3 | 16 | 200 | bs6 | - | 200 | 1,005 | 0.14 | |||
Distribution Steel | 20% of main reinforcement, Cl.16.6.1,IRC 112-2011 | |||||||||||||||
Section | Face | Doverall provd. (mm) |
Deff.provd. (mm) |
Ast.reqd. (mm2/m) |
Bar Mark | Dia. Of Bar | Spacing | Bar Mark | Dia. Of Bar | Spacing | Ast.Provd. (mm2/m) |
<!-- [if gte vml 1]>![]()
|
||||
Top Slab | Top | 600 | 526 | 691.94 | ts2 | 12 | 125 | - | 150 | 905 | 0.17 | |||||
Btm. | 600 | 526 | 515.22 | ts4 | 12 | 125 | - | 150 | 905 | 0.17 | ||||||
Wall | Inside | 700 | 601 | 691.94 | w3 | 12 | 125 | - | 150 | 905 | 0.15 | |||||
Outside | 700 | 601 | 314.16 | w4 | 12 | 125 | - | 150 | 905 | 0.15 | ||||||
Bottom Slab | Top | 700 | 601 | 805.03 | bs2 | 12 | 125 | - | 150 | 905 | 0.15 | |||||
Btm. | 700 | 601 | 805.03 | bs4 | 12 | 125 | - | 150 | 905 | 0.15 | ||||||
Check for Shear as per IRC:112-2020 | ||||||||||||||||
Note: | Shear force due to live load is not considered because live load is dispersed by effective width method | |||||||||||||||
Section | Vdes | Axial comp. Force(kN) | Doverall provd. (mm) |
Deff.provd. (mm) |
Ast,provided (mm2/m) |
Shear Resistance of Concrete | Status | Dia. Of Bar | No. of Legs | Spacing if required | ||||||
Top Slab | - | 600 | 550 | 3,460 | 241.02 | Not reqd | 12 | 2.00 | 200 | |||||||
Wall | - | 700 | 650 | 3,460 | Required | 12 | 2.00 | 200 | ||||||||
Bottom Slab | 389.31 | 232.00 | 700 | 625 | 3,460 | Required | 12 | 2.00 | 200 |
Design of Box- Serviceability Limit State(SLS) | ||||||||||
Permissible Stress in Concrete | = | 14.4 | Mpa | Cl.12.2.1,IRC:112-2020,P-100 | ||||||
Permissible Stress in steel | = | 400 | Mpa | Cl.12.2.2,IRC:112-2020,P-100 | ||||||
Section | Face | Mdes(kN.m) | Depth of NA(mm) | Doverall provd. (mm) |
Deff.provd. (mm) |
Ast.Provd. (mm2/m) |
max.Compressive Stress in Concrete Mpa | Status | max. Tensile Stress in Steel Mpa | Status |
Top | 78 | 600 | 542 | 1,005 | - | Ok | - | Ok | ||
Btm. | 118 | 600 | 540 | 2,576 | - | Ok | - | Ok | ||
Top | 134 | 600 | 538 | 3,460 | - | Ok | - | Ok | ||
Btm. | 95 | 600 | 540 | 1,571 | - | Ok | - | Ok | ||
Outside | 145 | 700 | 613 | 3,460 | - | Ok | - | Ok | ||
Inside | 85 | 700 | 642 | 1,005 | - | Ok | - | Ok | ||
Outside | 124 | 700 | 613 | 2,454 | - | Ok | - | Ok | ||
Inside | 117 | 700 | 642 | 2,011 | - | Ok | - | Ok | ||
Outside | 124 | 700 | 613 | 2,454 | - | Ok | - | Ok | ||
Inside | 85 | 700 | 642 | 1,005 | - | Ok | - | Ok | ||
3,4 | Top | 0 | 102 | 700 | 615 | 1,571 | - | Ok | - | Ok |
Btm. | 566.351 | 145 | 700 | 613 | 3,460 | 13.887 | Ok | 290.08 | Ok | |
9,10 | Top | 662.57 | 154 | 700 | 613 | 4,025 | 15.309 | Not Ok | 293.38 | Ok |
Btm. | 8 | 83 | 700 | 617 | 1,005 | 0.326 | Ok | 13.50 | Ok |
Design of Box- Serviceability Limit State(SLS) | |||||||||||||
Permissible Crack Width | = | 0.3 | mm | ||||||||||
Section | Face | Mdes(kN.m) | Depth of NA(mm) | Doverall provd. (mm) |
Deff.provd. (mm) |
Ast.Provd. (mm2/m) |
Max.Compressive Stress in Concrete Mpa | Status | Max. Tensile Stress in Steel Mpa | Status | Equivalent Dia. | Crack Width | Status |
Top | 106 | 600 | 542 | 1,005 | - | Ok | - | Ok | 16.00 | 0.20 | Ok | ||
Btm. | 159 | 600 | 540 | 2,576 | - | Ok | - | Ok | 18.22 | -0.12 | Ok | ||
Top | 179 | 700 | 538 | 3,460 | - | Ok | - | Ok | 21.49 | -0.11 | Ok | ||
Btm. | 129 | 700 | 540 | 1,571 | - | Ok | - | Ok | 20.00 | -0.44 | Ok | ||
Outside | 193 | 700 | 613 | 3,460 | - | Ok | - | Ok | 21.49 | -0.11 | Ok | ||
Inside | 117 | 700 | 642 | 1,005 | - | Ok | - | Ok | 16.00 | -0.51 | Ok | ||
Outside | 168 | 700 | 613 | 2,454 | - | Ok | - | Ok | 25.00 | -0.22 | Ok | ||
Inside | 158 | 700 | 642 | 2,011 | - | Ok | - | Ok | 16.00 | -0.17 | Ok | ||
Outside | 168 | 700 | 613 | 2,454 | - | Ok | - | Ok | 25.00 | -0.22 | Ok | ||
Inside | 117 | 700 | 642 | 1,005 | - | Ok | - | Ok | 16.00 | -0.51 | Ok | ||
3,4 | Top | 0 | 139 | 700 | 615 | 1,571 | - | Ok | - | Ok | 20.00 | -0.43 | Ok |
Btm. | 549.431 | 193 | 700 | 613 | 3,460 | 16.783 | Not Ok | 234.59 | Ok | 21.49 | 0.30 | Not Ok | |
9,10 | Top | 662.576 | 206 | 700 | 613 | 4,025 | 18.929 | Not Ok | 241.70 | Ok | 22.78 | 0.31 | Not Ok |
Btm. | 0 | 114 | 700 | 617 | 1,005 | - | Ok | - | Ok | 16.00 | -0.85 | Ok |
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
Challenge 3
Question 1: What are the sectional properties we need upfront for designing a metro viaduct? What is the supporting software for identifying the sectional properties and designing them? Answer: To design a metro viaduct, there are several sectional properties that need to be considered upfront. These properties include:…
02 Dec 2023 03:23 PM IST
Challenge 2
Question 1:- What are the structural components of a bridge? Explain in detail about the foundation, sub structure and super structure components of the bridge? Anwser:- A bridge is a complex structure built to span physical obstacles such as bodies of water, valleys, or roads, and provide passage over them.…
16 Nov 2023 06:05 AM IST
Challenge 1
Question:1 Why is a metro rail needed in countries with developing economy? What is your basic understanding on the differences between a conventional rail system and a metro rail system? Answer: Title: The Relevance of Metro Rail Systems in Economies Under Development Introduction: In countries with developing economies,…
15 Nov 2023 01:17 PM IST
Week 12 Challenge
Question: What is difference in active and passive earth pressure? Answer: Difference between Active and Passive Earth Pressure: Active and passive earth pressure are two types of lateral earth pressure that occur in soil mechanics and geotechnical engineering when a soil mass is subjected to external forces.…
21 Oct 2023 04:56 AM IST
Related Courses
127 Hours of Content
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.