All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
Aim: To create rankine cycle simulator using MATLAB. To demonstrate the T-s and h-s plots for the given set of inputs. Objectives: To create rankine cycle simulator using MATLAB. The code should calculate the state points of the Rankine Cycle (any type of your choice) based on user inputs. The h-s plot…
Kishoremoorthy SP
updated on 08 Aug 2022
Aim:
To create rankine cycle simulator using MATLAB. To demonstrate the T-s and h-s plots for the given set of inputs.
Objectives:
Rankine cycle:
Rankine cycle is a model created for analysing the efficiency of the steam turbine systems. The rankine cycle is designed with many assumptions. The rankine cycle is also used to analyse the performance of reciprocating steam engine. Rankine cycle is also used to measure the characteristics of various parameters in thermal power plant. The rankine cycle has four major components. They are, a) Turbine, b) Boiler, c) Pump and d) Condenser. The heat input is converted into work output in the rankine cycle. The heat input is given to the boiler and the work output is obtained from the turbine.
Various process in rankine cycle:
Process 1-2 : Isentropic compression.
Process 2-3 : Constant pressure heat addition in boiler.
Process 3-4 : Isentropic expansion.
Process 4-1 : Constant pressure heat rejection in condenser.
Formulae:
1) For boiler:
Q1 = h1 - hf4
2) For turbine:
WT = h1 -h2
3) For condeser
Q2 = h2 - hf3
4) For the feed pump
Wp = hf4 - hf3
5) Efficiency of the rankine cycle
η=(h1−h2)−(hf4−hf3)h1−hf4η=(h1-h2)-(hf4-hf3)h1-hf4
When hf4 - hf3 value is very small then,
η=h1−h2h1−hf4η=h1-h2h1-hf4
Steam conditions:
Based on the nature of the steam in the turbine inlet, the three types of condition is proposed. The three conditions are,
1) Wet steam ( x<1)
2) Saturated steam (x=1)
3) Super saturated steam (x>1)
The 'x' value is defined as the 'dryness fraction' based on the dryness fraction value the conditions can be classified. The 'x' value can be calculated by using the formula given below,
hi = hfi + x(hfgi) where i is the position in which all datas are known.
RANKINE CYLCE PROGRAMME CODES:
clear
close
clc
fprintf('RANKINE CYCLE PROCESS FLOW \n')
fprintf('1-2 is Isentropic Expansion in turbine\n')
fprintf('2-3 is constant pressure heat rejection in condensor\n')
fprintf('3-4 is Isentropic compression in pump\n')
fprintf('4-1 is constant pressure heat addition in boiler\n')
%Inputs
Pressure1 = input('turbine inlet pressure (bar)');
Temperature1 = input('turbine inlet temperature (degree c)');
Pressure2 = input('turbine outlet pressure (bar)');
%Turbine inlet condition
Temperature1_sat = XSteam('Tsat_p',Pressure1);
if Temperature1>Temperature1_sat
h1 = XSteam('h_pt',Pressure1,Temperature1);
s1 = XSteam('s_pt',Pressure1,Temperature1);
elseif Temperature1 == Temperature1_sat
h1 = XSteam('hV_p',Pressure1);
s1 = XSteam('sV_p',Pressure1);
else
fprintf('Enter higher temperature value')
end
%Turbine outlet condition
s2 = s1;
s2_sat = XSteam('sV_p',Pressure2);
if s2<s2_sat
s2_f = XSteam('sL_p',Pressure2);
s2_g = XSteam('sV_p',Pressure2);
x2 = (s2 - s2_f)/(s2_g - s2_f);
h2_f = XSteam('hL_p',Pressure2);
h2_g = XSteam('hV_p',Pressure2);
h2 = h2_f + x2*(h2_g - h2_f);
Temperature2 = XSteam('Tsat_p',Pressure2);
else
x2 = 1;
h2 = XSteam('hV_p',Pressure2);
Temperature2 = XSteam('Tsat_p',Pressure2);
end
%Condensor outlet condition
Pressure3 = Pressure2;
Temperature3 = XSteam('Tsat_p',Pressure3);
h3 = XSteam('hL_p',Pressure3);
s3 = XSteam('sL_p',Pressure3);
v3 = XSteam('vL_p',Pressure3);
%Pump outlet condition
s4 = s3;
Pressure4 = Pressure1;
v4 = XSteam('v_ps',Pressure4,s4);
Cp = XSteam('Cp_ps',Pressure4,s4);
Cv = XSteam('Cv_ps',Pressure4,s4);
g = Cp/Cv;
Temperature4 = Temperature3*((Pressure3/Pressure4)^((1-g)/g));
W_p = v3*(Pressure4-Pressure3)*100;
h4 = h3 + W_p;
Temperature5 = XSteam('Tsat_p',Pressure4);
s5 = XSteam('sL_p',Pressure4);
Temperature6 = Temperature5;
s6 = XSteam('sV_T',Temperature6);
%Calculation of work done, heat and efficiency
W_t = h1 - h2;
W_net = W_t - W_p;
Q_in = h1 - h4;
Q_out = h2 - h3;
Efficiency = W_net/Q_in;
%Back work ratio calculation
SSC = 3600/W_net;
%Plotting
%T-S diagram
a=linspace(0,374,500);
figure (1)
hold on
for i=1:length(a)
plot(XSteam('sL_T',a(i)),a(i),'.','color','r')
plot(XSteam('sV_T',a(i)),a(i),'.','color','r')
end
plot([s1 s2],[Temperature1 Temperature2],'color','k','linewidth',2)
text(s1,Temperature1,' 1')
text(s2,Temperature2,' 2')
plot([s2 s6],[Temperature1 Temperature6],'color','k','linewidth',2)
plot([s6 s5],[Temperature6 Temperature6],'color','k','linewidth',2)
plot([s5 s4],[Temperature6 Temperature4],'color','k','linewidth',2)
text(s4,Temperature4,' 4')
plot([s4 s3],[Temperature4 Temperature3],'color','k','linewidth',2)
text(s3,Temperature3,' 3')
plot([s3 s1],[Temperature3 Temperature3],'color','k','linewidth',2)
title('T-S diagram')
xlabel('Entropy (KJ/KgK)')
ylabel('Temperature (Deg celcius)')
%H-S diagram
figure (2)
hold on
plot([s1 s2],[h1 h2],'color','k','linewidth',2)
text(s1,h1,' 1')
text(s2,h2,' 2')
plot([s2 s3],[h2 h3],'color','k','linewidth',2)
plot([s3 s4],[h3 h4],'color','k','linewidth',2)
text(s3,h3,' 3')
text(s4,h4,' 4')
plot([s4 s1],[h4 h1],'color','k','linewidth',2)
for i=1:length(a)
plot(XSteam('sL_T',a(i)),XSteam('hL_T',a(i)),'.','color','r')
plot(XSteam('sV_T',a(i)),XSteam('hV_T',a(i)),'.','color','r')
end
title('H-S diagram')
xlabel('Entropy (KJ/KgK)')
ylabel('Enthalpy (KJ/kg)')
%Output
fprintf(' RESULTS\n')
fprintf('At state point 1: At state point 3:\n')
fprintf('%s %.2f','Pressure1 is : ',Pressure1,' Bar')
fprintf('%s %.2f',' Pressure3 is : ',Pressure3,' Bar')
fprintf('\n')
fprintf('%s %.2f','Temperature1 is : ',Temperature1,' Deg celcius')
fprintf('%s %.2f',' Temperature3 is : ',Temperature3,' Deg celcius')
fprintf('\n')
fprintf('%s %.2f','H1 is : ',h1,' KJ/kg')
fprintf('%s %.2f',' H3 is : ',h3,' KJ/kg')
fprintf('\n')
fprintf('%s %.2f','S1 is : ',s1,' KJ/KgK')
fprintf('%s %.2f',' S3 is : ',s3,' KJ/KgK')
fprintf('\n\n')
fprintf('At state point 2: At state point 4:\n')
fprintf('%s %.2f','Pressure2 is : ',Pressure2,' Bar')
fprintf('%s %.2f',' Pressure4 is : ',Pressure4,' Bar')
fprintf('\n')
fprintf('%s %.2f','Temperature2 is : ',Temperature2,' Deg celcius')
fprintf('%s %.2f',' Temperature4 is : ',Temperature4,' Deg celcius')
fprintf('\n')
fprintf('%s %.2f','H2 is : ',h2,' KJ/kg')
fprintf('%s %.2f',' H4 is : ',h4,' KJ/kg')
fprintf('\n')
fprintf('%s %.2f','S2 is : ',s2,' KJ/KgK')
fprintf('%s %.2f',' S4 is : ',s4,' KJ/KgK')
fprintf('\n\n')
fprintf('%s %.2f','Wt is : ',W_t,' KJ/kg')
fprintf('\n')
fprintf('%s %.2f','Wp is : ',W_p,' KJ/kg')
fprintf('\n')
fprintf('%s %.2f','Wnet is : ',W_net,' KJ/kg')
fprintf('\n')
fprintf('%s %.2f','Ntherm is : ',Efficiency,' Percent')
fprintf('\n')
fprintf('%s %.2f','S.S.C is : ',SSC,' KJ/KWh')
fprintf('\n')
Code explanation:
Input values:
Output:
The various result values calculated for the given input is shown below
GRAPH FOR T-S DIAGRAM HAS BEEN SHOWN BELOW:
GRAPH FOR H-S DIAGRAM HAS BEEN SHOWN BELOW:
Conclusion:
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
Week 4 Challenge : CFD Meshing for BMW car
AIM: FOR THE GIVE MODEL, CHECK AND SOLVE ALL GEOMETRICAL ERRORS ON HALF PORTION AND ASSIGN APPROPRITATE PIDS. PERFORMS MESHING WITH GIVEN TARGET LENGTH AND ELEMENT QUALITY CRITERIA. AFTER MESHING THE HALF MODEL,DO SYMMETRY TO THE OTHER SIDE. PRODECURE: INITIALLY, OPEN THE GIVEN BMW MODEL IN ANSA SOFTWARE.…
20 Oct 2023 11:25 AM IST
Week 12 - Validation studies of Symmetry BC vs Wedge BC in OpenFOAM vs Analytical H.P equation
Aim: employing the symmetry boundary condition to simulate an axis-symmetric laminar flow through the pipe's constant cross-section. Using both symmetry and wedge boundary conditions, simulate the aforementioned angles—10, 25, and 45 degrees—and evaluate your results using HP equations. Introduction: Hagen-Poiseuille's…
04 May 2023 03:14 PM IST
Week 11 - Simulation of Flow through a pipe in OpenFoam
Aim: Simulate axisymmetric flow in a pipe through foam. Objective: Verify the hydrodynamic length using the numerical result Verify a fully developed flow rate profile with its analytical profile Verify the maximum velocity and pressure drop for fully developed flow Post-process Shear Stress and verify wall shear stress…
04 May 2023 03:04 PM IST
Week 9 - FVM Literature Review
AIM To describe the need for interpolation schemes and flux limiters in Finite Volume Method (FVM). OBJECTIVE To study and understand What is Finite Volume Method(FVM) Write down the major differences between FDM & FVM Describe the need for interpolation schemes and flux limiters in FVM INTRODUCTION …
03 May 2023 05:47 AM IST
Related Courses
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.