All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
PROJECT 1 Given, Concrete floor thickness = 120 mm = 0.12 m S.W of floor = 0.12*25 = 3 kPa Floor finish and mech loads = 3 kPa Live load = 5 kPa Total load = 11 kPa S.W of beam = 0.5*0.75*25 = 9.375 kN/m Load on the indicated beam = (11*1.5)*2 =33 kN/m Adding S.w of beam = 33 + 9.375 = 42.375 kN/m Analyzing…
SAI HARSHITA M M
updated on 10 Feb 2022
PROJECT 1
Given,
Concrete floor thickness = 120 mm = 0.12 m
S.W of floor = 0.12*25 = 3 kPa
Floor finish and mech loads = 3 kPa
Live load = 5 kPa
Total load = 11 kPa
S.W of beam = 0.5*0.75*25 = 9.375 kN/m
Load on the indicated beam = (11*1.5)*2
=33 kN/m
Adding S.w of beam = 33 + 9.375 = 42.375 kN/m
Solving by slope deflection method
Fixed End Moments:
MFAB = -(42.375*81)/12 = -286.03 kNm
MFBA = 286.03 kNm
MFBC= -286.03 kNm
MFCB = 286.03 kNm
MFCD = -286.03 kNm
MFDC = 286.03 kNm
MFDE = -286.03 kNm
MFED = 286.03 kNm
Unknowns : θa, θb, θc, θd, θe
E = 10 GPa = 10 * 10^6 kPa
= 1 *10^7 kPa
I = (0.5*0.75^3)/12 = 0.0176 m4
EI = 1.76*10^5 kNm2
End Moments:
Span AB :
M ab = MFAB + (2EI/L)(2θa + θb)
= -286.03 + (2*1.76*10^5/9)( 2θa + θb )
= -286.03 + 78222.2 θa + 39111.1 θb
M ba = MFBA + (2EI/L)(2θb + θa )
= 286.03 + (2*1.76*10^5/9)( 2θb + θa )
= 286.03 + 78222.2 θb + 39111.1 θa
M bc = MFBC + (2EI/L)(2θb + θc)
= -286.03 + (2*1.76*10^5/9)( 2θb + θc )
= -286.03 + 78222.2 θb + 39111.1 θc
M cb = MFCB + (2EI/L)(2θc + θb)
= 286.03 + (2*1.76*10^5/9)( 2θc + θb )
= 286.03 + 78222.2 θc + 39111.1 θb
M cd = MFCD + (2EI/L)(2θc + θd)
= -286.03 + (2*1.76*10^5/9)( 2θc + θd )
= -286.03 + 78222.2 θc + 39111.1 θd
M dc = MFDC + (2EI/L)(2θd + θc )
= 286.03 + (2*1.76*10^5/9)( 2θd + θc )
= 286.03 + 78222.2 θd + 39111.1 θc
M de = MFDE + (2EI/L)(2θd + θe)
= -286.03 + (2*1.76*10^5/9)( 2θd + θe )
= -286.03 + 78222.2 θd + 39111.1 θe
M ed = MFED + (2EI/L)(2θe + θd )
= 286.03 + (2*1.76*10^5/9)( 2θe + θd )
= 286.03 + 78222.2 θe + 39111.1 θd
Equilibrium equations:
Mab = 0
78222.2 θa + 39111.1 θb= 286.03
Mba + Mbc = 0
(286.03 + 78222.2 θb + 39111.1 θa) + (-286.03 + 78222.2 θb + 39111.1 θc) = 0
39111.1 θa + 1.56 * 10^5 θb +39111.1 θc = 0
Mcb + Mcd = 0
39111.1 θb + 1.56 * 10^5 θc +39111.1 θd = 0
Mdc + Mde = 0
39111.1 θc + 1.56 * 10^5 θd +39111.1 θe = 0
Med = 0
39111.1 θd + 78222.2 θe = -286.03
Solving the unknowns,
θa = 0.00418
θb = -0.00105
θc = 0
θd = 0.00105
θe = -0.00418
On Substituting,
Mab = 0
Mba = 367.38 kNm
Mbc = -367.38 kNm
Mcb = 244.96 kNm
Mcd = -244.96 kNm
Mdc = 367.38 kNm
Mde = -367.38 kNm
Med = 0
Analyzing individual members,
AB:
∑Ma = 0
(42.375*9*4.5)-9Rb + 367.38 = 0
Rb1 = 231.51 kN
Ra = 149.87 kN
BC:
∑Mc = 0
-367.38 + 244.96 – (42.375*9*4.5) + 9 Rb2 = 0
Rb2 = 204.3 kN
Rc1 = 177.09 kN
CD:
∑Md = 0
-244.96+367.38-(42.375*9*4.5)+9Rc2 = 0
Rc2 = 177.09 kN
Rd1 = 204.3 kN
DE:
∑Me = 0
-367.38+9Rd2-(42.375*9*4.5)=0
Rd2=231.51kN
Re=149.87kN
To get maximum positive moment in AB, AB and CD has to be loaded. Similarly to get maximum positive moment in CD, AB and CD has to be loaded with Live load including SW and DL. The remaining spans has to be loaded with self weight and DL alone
S.W of floor = 3 kPa
Mech services and Floor finishes = 3 kPa
Total load = 6 kPa
S.W of beam = 9.375 kN/m
Load on the beam = (6*1.5*2) = 18 kN/m
Adding S.W = 18 + 9.375 = 27.375 kN/m
Live Load on spans AB and CD = ( 5*1.5*2) = 15 kN/m
Total load on AB and CD = 15 + 27.375 = 42.375 kN/m
Solving by slope deflection method,
Fixed End Moments:
MFAB = -(42.375*81)/12 = -286.03 kNm
MFBA = 286.03 kNm
MFBC= -(27.375*81)/12= -184.78 kNm
MFCB = 184.78 kNm
MFCD = -286.03 kNm
MFDC = 286.03 kNm
MFDE = -184.78 kNm
MFED = 184.78 kNm
Unknowns : θa, θb, θc, θd, θe
E = 10 GPa = 10 * 10^6 kPa
= 1 *10^7 kPa
I = (0.5*0.75^3)/12 = 0.0176 m4
EI = 1.76*10^5 kNm2
End Moments:
Span AB :
M ab = MFAB + (2EI/L)(2θa + θb)
= -286.03 + (2*1.76*10^5/9)( 2θa + θb )
= -286.03 + 78222.2 θa + 39111.1 θb
M ba = MFBA + (2EI/L)(2θb + θa )
= 286.03 + (2*1.76*10^5/9)( 2θb + θa )
= 286.03 + 78222.2 θb + 39111.1 θa
M bc = MFBC + (2EI/L)(2θb + θc)
= -184.78 + (2*1.76*10^5/9)( 2θb + θc )
= -184.78 + 78222.2 θb + 39111.1 θc
M cb = MFCB + (2EI/L)(2θc + θb)
= 184.78 + (2*1.76*10^5/9)( 2θc + θb )
= 184.78 + 78222.2 θc + 39111.1 θb
M cd = MFCD + (2EI/L)(2θc + θd)
= -286.03 + (2*1.76*10^5/9)( 2θc + θd )
= -286.03 + 78222.2 θc + 39111.1 θd
M dc = MFDC + (2EI/L)(2θd + θc )
= 286.03 + (2*1.76*10^5/9)( 2θd + θc )
= 286.03 + 78222.2 θd + 39111.1 θc
M de = MFDE + (2EI/L)(2θd + θe)
= -184.78 + (2*1.76*10^5/9)( 2θd + θe )
= -184.78 + 78222.2 θd + 39111.1 θe
M ed = MFED + (2EI/L)(2θe + θd )
= 184.78 + (2*1.76*10^5/9)( 2θe + θd )
= 184.78 + 78222.2 θe + 39111.1 θd
Equilibrium equations:
Mab = 0
78222.2 θa + 39111.1 θb= 286.03
Mba + Mbc = 0
39111.1 θa + 1.56 * 10^5 θb +39111.1 θc = -101.25
Mcb + Mcd = 0
39111.1 θb + 1.56 * 10^5 θc +39111.1 θd = 101.25
Mdc + Mde = 0
39111.1 θc + 1.56 * 10^5 θd +39111.1 θe = -101.25
Med = 0
39111.1 θd + 78222.2 θe = -184.78
Solving the unknowns,
θa = 0.00474
θb = -0.00216
θc = 0.00130
θd = -0.00044
θe = -0.00214
On Substituting,
Mab = 0
Mba = 302.46 kNm
Mbc = -302.46 kNm
Mcb = 201.99 kNm
Mcd = -201.99 kNm
Mdc = 302.46 kNm
Mde = -302.46 kNm
Med = 0
Analyzing individual members,
AB:
∑Ma = 0
-9Rb1 + 302.46+(42.375*9*4.5)=0
Rb1 = 224.3 kN
Ra = 157.08 kN
BC:
∑Mc = 0
9Rb2 + 201.99-302.46-(27.375*9*4.5)=0
Rb2 = 134.35 kN
Rc1 = 112.02 kN
CD:
∑Md = 0
9Rc2 –(42.375*9*4.5)-201.99-302.46=0
Rc2=179.52 kN
Rd1 = 201.85 kN
DE:
∑Me = 0
9Rd2 –(27.375*9*4.5)-302.46=0
Rd2 = 156.79 kN
Re = 89.58 kN
To get max positive and negative moment in span BC (as well as DE), BC and DE have to be loaded with LL
Solving by slope deflection method,
Fixed End Moments:
MFAB = -(42.375*81)/12 = -184.78 kNm
MFBA = 184.78 kNm
MFBC= -(27.375*81)/12= -286.03 kNm
MFCB = 286.03 kNm
MFCD = -184.78 kNm
MFDC = 184.78 kNm
MFDE = -286.03 kNm
MFED = 286.03 kNm
Unknowns : θa, θb, θc, θd, θe
E = 10 GPa = 10 * 10^6 kPa
= 1 *10^7 kPa
I = (0.5*0.75^3)/12 = 0.0176 m4
EI = 1.76*10^5 kNm2
End Moments:
Span AB :
M ab = MFAB + (2EI/L)(2θa + θb)
= -184.78 + (2*1.76*10^5/9)( 2θa + θb )
= -184.78 + 78222.2 θa + 39111.1 θb
M ba = MFBA + (2EI/L)(2θb + θa )
= 184.78 + (2*1.76*10^5/9)( 2θb + θa )
= 184.78 + 78222.2 θb + 39111.1 θa
M bc = MFBC + (2EI/L)(2θb + θc)
= -286.03 + (2*1.76*10^5/9)( 2θb + θc )
= -286.03+ 78222.2 θb + 39111.1 θc
M cb = MFCB + (2EI/L)(2θc + θb)
= 286.03 + (2*1.76*10^5/9)( 2θc + θb )
= 286.03+ 78222.2 θc + 39111.1 θb
M cd = MFCD + (2EI/L)(2θc + θd)
= -184.78 + (2*1.76*10^5/9)( 2θc + θd )
= -184.78+ 78222.2 θc + 39111.1 θd
M dc = MFDC + (2EI/L)(2θd + θc )
= 184.78 + (2*1.76*10^5/9)( 2θd + θc )
= 184.78+ 78222.2 θd + 39111.1 θc
M de = MFDE + (2EI/L)(2θd + θe)
= -286.03 + (2*1.76*10^5/9)( 2θd + θe )
= -286.03+ 78222.2 θd + 39111.1 θe
M ed = MFED + (2EI/L)(2θe + θd )
= 286.03 + (2*1.76*10^5/9)( 2θe + θd )
= 286.03+ 78222.2 θe + 39111.1 θd
Equilibrium equations:
Mab = 0
78222.2 θa + 39111.1 θb= 184.78
Mba + Mbc = 0
39111.1 θa + 1.56 * 10^5 θb +39111.1 θc = 101.25
Mcb + Mcd = 0
39111.1 θb + 1.56 * 10^5 θc +39111.1 θd = -101.25
Mdc + Mde = 0
39111.1 θc + 1.56 * 10^5 θd +39111.1 θe = 101.25
Med = 0
39111.1 θd + 78222.2 θe = -286.03
Solving the unknowns,
θa = 0.00214
θb = 0.00044
θc = -0.00130
θd = 0.00216
θe = -0.00474
On Substituting,
Mab = 0
Mba = 302.46 kNm
Mbc = -302.46 kNm
Mcb = 201.99 kNm
Mcd = -201.99 kNm
Mdc = 302.46 kNm
Mde = -302.46 kNm
Med = 0
Analyzing individual members,
AB:
∑Mb = 0
9Ra + 302.46-(27.375*9*4.5)=0
Rb1 = 156.79 kN
Ra = 89.58 kN
BC:
∑Mc = 0
9Rb2 + 201.99-302.46-(42.375*9*4.5)=0
Rb2 = 201.85 kN
Rc1 = 179.52 kN
CD:
∑Md = 0
9Rc2 –(27.375*9*4.5)-201.99-302.46=0
Rc2=112.02 kN
Rd1 = 134.35 kN
DE:
∑Me = 0
9Rd2 –(42.375*9*4.5)-302.46=0
Rd2 = 224.3 kN
Re = 157.08 kNLeave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
Project 2
PROJECT 2 AIM: To model and design a PEB Warehouse using Staadpro Procedure: Create nodes and add beams Create other roof frames by checking the floor plan given in the attachment. Use translational repeat to complete the structure Now start modelling the mezzanine floors Also add nodes to form canopy Load…
09 Jun 2023 02:33 PM IST
Project 1
Question:- AIM: To Model & Design a Proposed Coil Centre, Chennai using STAAD. Pro for following input from Client Design only a Main Frame with Lean (Grid 2) & Gable Frame without Lean (Grid 15) Assume purlin load as 8.77 kg/m Assume Gantry girder wt. = 158.24 kg/m Assume Rail weight = 53 kg/m Procedure: Open a new project…
29 May 2023 09:20 AM IST
Week 12 Challenge
Design of Foundation in STAAD Foundation 1. Isolated Footing Design isolated footing for a column 300 mm x 450 mm, carrying axial load of 1500 kN and Mu = 150 kNm using STAAD. Foundation. Assume that the moment is reversible. The safe bearing capacity of the soil is 200 kN/m2 at a depth of 1 metre from ground level.…
27 May 2023 07:29 AM IST
Week 11 Challenge
Week 11 Challenge Solutions 1. Friction load determination A pipe carrying LNG rests on the shoe having vertical force of 125 kN. Calculate the Friction load on the axis. Also find the friction force, if TEFLON pad is used between shoe and pipe support. Procedure: Friction factor on Piping: Materials Friction factor Steel…
22 May 2023 01:54 PM IST
Related Courses
0 Hours of Content
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.