All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
Objective: Create the Ahmed Body slant for both 250 and 350 Run Steady-state implicit coupled flow simulation Use the turbulence models K-OmegsSST and k-epsilon Validate the velocity profile along the Ahmed body at different points with the experimental data. Calculate the cd and cl using the different turbulence.…
Mohammad Saifuddin
updated on 16 Feb 2020
Objective:
AHMED BODY
The Ahmed body is a generic car body (a simplified vehicle model). The airflow around the Ahmed body captures the essential flow features around an automobile and was first defined and characterized in the experimental work of S. R. Ahmed in 1984. Although it has a very simple shape, the Ahmed body allows us to capture characteristic features that are relevant to bodies in the automobile industry.
This model is also used to describe the turbulent flow field around a car-like geometry. Once the numerical model is validated, it is used to design new models of the car.
In this project, I am performing external flow analysis on Ahmed Body in STAR-CCM+ and comparing the numerical data with the experimental data to validate my results.
1. 3D CAD
Ahmed body dimensions
Coordinates for legs
Wind tunnel dimensions
Distinguished inputs
2. Subtract operation
3. Meshing
Default controls
Custome controls
Volumetric control defined on a small block. This block is created for generating a finer mesh near the Ahmed body.
Surface mesh
Volume mesh
Section plane
Case 1: External flow analysis of Ahmed body (Slant-25 degrees) with k-epsilon
turbulence model in STAR-CCM+
Physics setup
24 probes have been created at different locations on the x-axis to export velocity data.
All the physics models selected in this case is shown below.
Inlet velocity = 40 m/s.
Results
Residuals
Drag coefficient
Lift coefficient
Velocity contour
Pressure contour
Case 2: External flow analysis of Ahmed body (Slant-25 degrees) with k-omega SST
turbulence model in STAR-CCM+
All the parameters will remain the same in case 2 except the turbulence model. We will use k-omega SST turbulence model in case 2.
Physics setup
All the physics models selected in this case is shown below.
Inlet velocity = 40 m/s.
Results
Residuals
Coefficient of Drag
Coefficient of Lift
Velocity contour
Pressure contour
Case 3: External flow analysis of Ahmed body (Slant-35 degrees) with k-epsilon
turbulence model in STAR-CCM+
In case 3 we will change the slant angle of Ahmed body to 35 degrees. We will use k-epsilon turbulence model in this case.
Physics setup
All the physics models selected in this case is shown below.
Inlet velocity = 40 m/s.
Results
Residuals
Coefficient of Drag
Coefficient of Lift
Velocity contour
Pressure contour
Case 4: External flow analysis of Ahmed body (Slant-35 degrees) with k-omega SST
turbulence model in STAR-CCM+
All the parameters will remain the same in case 4 except the turbulence model. We will use k-omega SST turbulence model in case 4.
Physics setup
All the physics models selected in this case is shown below.
Inlet velocity = 40 m/s.
Results
Residuals
Coefficient of Drag
Coefficient of Lift
Velocity contour
Pressure contour
Normalized plots for comparing the numerical and experimental data for all four cases.
Plot for case 1
Plot for case 2
Plot for case 3
Plot for case 4
Conclusion
Matlab code to generate the normalized plot
close all
clear all
clc
%% Plotting Ahmed body
% Plotting arc 1
a1 = -944; % x coordinate of arc
b1 = 150; % y coordinate of arc
circr = @(radius,rad_ang) [radius*cos(rad_ang)+a1; radius*sin(rad_ang)+b1]; % Circle Function For Angles In Radians
N1 = 500; % Number Of Points In Complete Circle
r_angl_1 = linspace(-pi, -pi/2, N1); % Angle Defining Arc Segment (radians)
radius_1 = 100; % Arc Radius
xy_r1 = circr(radius_1,r_angl_1); % Matrix (2xN) Of (x,y) Coordinates
figure(1)
hold on
p1 = plot(xy_r1(1,:), xy_r1(2,:),"color","bla","linewidth",2);
% Plotting arc 2
a2 = -944;
b2 = 238;
circr = @(radius,rad_ang) [radius*cos(rad_ang)+a2; radius*sin(rad_ang)+b2]; % Circle Function For Angles In Radians
N2 = 500; % Number Of Points In Complete Circle
r_angl_2 = linspace(pi, pi/2, N2); % Angle Defining Arc Segment (radians)
radius_2 = 100; % Arc Radius
xy_r2 = circr(radius_2,r_angl_2); % Matrix (2xN) Of (x,y) Coordinates
plot(xy_r2(1,:), xy_r2(2,:),"color","bla","linewidth",2);
% plotting the straight lines in Ahmed body
plot([-944 0],[50 50],"color","bla","linewidth",2);
plot([0 0],[50 244.1787],"color","bla","linewidth",2);
plot([0 -201.2003],[244.1787 338],"color","bla","linewidth",2);
plot([-201.2003 -944],[338 338],"color","bla","linewidth",2);
plot([-1044 -1044],[150 238],"color","bla","linewidth",2);
grid minor
axis equal
axis([-1500 750 0 750])
%col1=xy_r1(1,:);
%col2=xy_r1(2,:);
% Normalized plot
alpha = 20;
inlet_velocity = 40; % m/s
%Simulation at -1442 mm
data_sim_1 = xlsread('num25ke.xlsx');
x_loc_sim_1 = data_sim_1(1:29,1);
z_loc_sim_1 = data_sim_1(1:29,2);
v_sim_1 = data_sim_1(1:29,3);
norm_sim_1 = alpha.*(v_sim_1./inlet_velocity);
x_sim_1 = x_loc_sim_1 + norm_sim_1 ;
z_sim_1 = z_loc_sim_1;
p2= plot(x_sim_1,z_sim_1,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at -1442 mm
data_exp_1 = xlsread('exp25.xlsx');
x_loc_exp_1 = data_exp_1(1:29,1);
z_loc_exp_1 = data_exp_1(1:29,3);
v_exp_1 = data_exp_1(1:29,8);
norm_exp_1 = alpha.*(v_exp_1./inlet_velocity);
x_exp_1 = x_loc_exp_1 + norm_exp_1;
z_exp_1 = z_loc_exp_1;
p3 = plot(x_exp_1,z_exp_1,"linewidth",1,"Color","b");
%Simulation at -1262 mm
data_sim_2 = xlsread('num25ke.xlsx');
x_loc_sim_2 = data_sim_2(30:58,1);
z_loc_sim_2 = data_sim_2(30:58,2);
v_sim_2 = data_sim_2(30:58,3);
norm_sim_2 = alpha.*(v_sim_2./inlet_velocity);
x_sim_2 = x_loc_sim_2 + norm_sim_2 ;
z_sim_2 = z_loc_sim_2;
plot(x_sim_2,z_sim_2,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at -1262 mm
data_exp_2 = xlsread('exp25.xlsx');
x_loc_exp_2 = data_exp_2(30:58,1);
z_loc_exp_2 = data_exp_2(30:58,3);
v_exp_2 = data_exp_2(30:58,8);
norm_exp_2 = alpha.*(v_exp_2./inlet_velocity);
x_exp_2 = x_loc_exp_2 + norm_exp_2;
z_exp_2 = z_loc_exp_2;
plot(x_exp_2,z_exp_2,"linewidth",1,"Color","b");
%Simulation at -1162 mm
data_sim_3 = xlsread('num25ke.xlsx');
x_loc_sim_3 = data_sim_3(59:87,1);
z_loc_sim_3 = data_sim_3(59:87,2);
v_sim_3 = data_sim_3(59:87,3);
norm_sim_3 = alpha.*(v_sim_3./inlet_velocity);
x_sim_3 = x_loc_sim_3 + norm_sim_3 ;
z_sim_3 = z_loc_sim_3;
plot(x_sim_3,z_sim_3,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at -1162 mm
data_exp_3 = xlsread('exp25.xlsx');
x_loc_exp_3 = data_exp_3(59:87,1);
z_loc_exp_3 = data_exp_3(59:87,3);
v_exp_3 = data_exp_3(59:87,8);
norm_exp_3 = alpha.*(v_exp_3./inlet_velocity);
x_exp_3 = x_loc_exp_3 + norm_exp_3;
z_exp_3 = z_loc_exp_3;
plot(x_exp_3,z_exp_3,"linewidth",1,"Color","b");
%Simulation at -1062 mm
data_sim_4 = xlsread('num25ke.xlsx');
x_loc_sim_4 = data_sim_4(88:116,1);
z_loc_sim_4 = data_sim_4(88:116,2);
v_sim_4 = data_sim_4(88:116,3);
norm_sim_4 = alpha.*(v_sim_4./inlet_velocity);
x_sim_4 = x_loc_sim_4 + norm_sim_4 ;
z_sim_4 = z_loc_sim_4;
plot(x_sim_4,z_sim_4,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at -1062 mm
data_exp_4 = xlsread('exp25.xlsx');
x_loc_exp_4 = data_exp_4(88:116,1);
z_loc_exp_4 = data_exp_4(88:116,3);
v_exp_4 = data_exp_4(88:116,8);
norm_exp_4 = alpha.*(v_exp_4./inlet_velocity);
x_exp_4 = x_loc_exp_4 + norm_exp_4;
z_exp_4 = z_loc_exp_4;
plot(x_exp_4,z_exp_4,"linewidth",1,"Color","b");
%Simulation at -962 mm
data_sim_5 = xlsread('num25ke.xlsx');
x_loc_sim_5 = data_sim_5(117:131,1);
z_loc_sim_5 = data_sim_5(117:131,2);
v_sim_5 = data_sim_5(117:131,3);
norm_sim_5 = alpha.*(v_sim_5./inlet_velocity);
x_sim_5 = x_loc_sim_5 + norm_sim_5 ;
z_sim_5 = z_loc_sim_5;
plot(x_sim_5,z_sim_5,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at -962 mm
data_exp_5 = xlsread('exp25.xlsx');
x_loc_exp_5 = data_exp_5(117:131,1);
z_loc_exp_5 = data_exp_5(117:131,3);
v_exp_5 = data_exp_5(117:131,8);
norm_exp_5 = alpha.*(v_exp_5./inlet_velocity);
x_exp_5 = x_loc_exp_5 + norm_exp_5;
z_exp_5 = z_loc_exp_5;
plot(x_exp_5,z_exp_5,"linewidth",1,"Color","b");
%Simulation at -862 mm
data_sim_6 = xlsread('num25ke.xlsx');
x_loc_sim_6 = data_sim_6(132:146,1);
z_loc_sim_6 = data_sim_6(132:146,2);
v_sim_6 = data_sim_6(132:146,3);
norm_sim_6 = alpha.*(v_sim_6./inlet_velocity);
x_sim_6 = x_loc_sim_6 + norm_sim_6 ;
z_sim_6 = z_loc_sim_6;
plot(x_sim_6,z_sim_6,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at -862 mm
data_exp_6 = xlsread('exp25.xlsx');
x_loc_exp_6 = data_exp_6(132:146,1);
z_loc_exp_6 = data_exp_6(132:146,3);
v_exp_6 = data_exp_6(132:146,8);
norm_exp_6 = alpha.*(v_exp_6./inlet_velocity);
x_exp_6 = x_loc_exp_6 + norm_exp_6;
z_exp_6 = z_loc_exp_6;
plot(x_exp_6,z_exp_6,"linewidth",1,"Color","b");
%Simulation at -562 mm
data_sim_7 = xlsread('num25ke.xlsx');
x_loc_sim_7 = data_sim_7(147:161,1);
z_loc_sim_7 = data_sim_7(147:161,2);
v_sim_7 = data_sim_7(147:161,3);
norm_sim_7 = alpha.*(v_sim_7./inlet_velocity);
x_sim_7 = x_loc_sim_7 + norm_sim_7 ;
z_sim_7 = z_loc_sim_7;
plot(x_sim_7,z_sim_7,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at -562 mm
data_exp_7 = xlsread('exp25.xlsx');
x_loc_exp_7 = data_exp_7(147:161,1);
z_loc_exp_7 = data_exp_7(147:161,3);
v_exp_7 = data_exp_7(147:161,8);
norm_exp_7 = alpha.*(v_exp_7./inlet_velocity);
x_exp_7 = x_loc_exp_7 + norm_exp_7;
z_exp_7 = z_loc_exp_7;
plot(x_exp_7,z_exp_7,"linewidth",1,"Color","b");
%Simulation at -362 mm
data_sim_8 = xlsread('num25ke.xlsx');
x_loc_sim_8 = data_sim_8(162:176,1);
z_loc_sim_8 = data_sim_8(162:176,2);
v_sim_8 = data_sim_8(162:176,3);
norm_sim_8 = alpha.*(v_sim_8./inlet_velocity);
x_sim_8 = x_loc_sim_8 + norm_sim_8 ;
z_sim_8 = z_loc_sim_8;
plot(x_sim_8,z_sim_8,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at -362 mm
data_exp_8 = xlsread('exp25.xlsx');
x_loc_exp_8 = data_exp_8(162:176,1);
z_loc_exp_8 = data_exp_8(162:176,3);
v_exp_8 = data_exp_8(162:176,8);
norm_exp_8 = alpha.*(v_exp_8./inlet_velocity);
x_exp_8 = x_loc_exp_8 + norm_exp_8;
z_exp_8 = z_loc_exp_8;
plot(x_exp_8,z_exp_8,"linewidth",1,"Color","b");
%Simulation at -262 mm
data_sim_9 = xlsread('num25ke.xlsx');
x_loc_sim_9 = data_sim_9(177:191,1);
z_loc_sim_9 = data_sim_9(177:191,2);
v_sim_9 = data_sim_9(177:191,3);
norm_sim_9 = alpha.*(v_sim_9./inlet_velocity);
x_sim_9 = x_loc_sim_9 + norm_sim_9 ;
z_sim_9 = z_loc_sim_9;
plot(x_sim_9,z_sim_9,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at -262 mm
data_exp_9 = xlsread('exp25.xlsx');
x_loc_exp_9 = data_exp_9(177:191,1);
z_loc_exp_9 = data_exp_9(177:191,3);
v_exp_9 = data_exp_9(177:191,8);
norm_exp_9 = alpha.*(v_exp_9./inlet_velocity);
x_exp_9 = x_loc_exp_9 + norm_exp_9;
z_exp_9 = z_loc_exp_9;
plot(x_exp_9,z_exp_9,"linewidth",1,"Color","b");
%Simulation at -212 mm
data_sim_10 = xlsread('num25ke.xlsx');
x_loc_sim_10 = data_sim_10(192:206,1);
z_loc_sim_10 = data_sim_10(192:206,2);
v_sim_10 = data_sim_10(192:206,3);
norm_sim_10 = alpha.*(v_sim_10./inlet_velocity);
x_sim_10 = x_loc_sim_10 + norm_sim_10 ;
z_sim_10 = z_loc_sim_10;
plot(x_sim_10,z_sim_10,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at -212 mm
data_exp_10 = xlsread('exp25.xlsx');
x_loc_exp_10 = data_exp_10(192:204,1);
z_loc_exp_10 = data_exp_10(192:204,3);
v_exp_10 = data_exp_10(192:204,8);
norm_exp_10 = alpha.*(v_exp_10./inlet_velocity);
x_exp_10 = x_loc_exp_10 + norm_exp_10;
z_exp_10 = z_loc_exp_10;
plot(x_exp_10,z_exp_10,"linewidth",1,"Color","b");
%Simulation at -162 mm
data_sim_11 = xlsread('num25ke.xlsx');
x_loc_sim_11 = data_sim_11(207:221,1);
z_loc_sim_11 = data_sim_11(207:221,2);
v_sim_11 = data_sim_11(207:221,3);
norm_sim_11 = alpha.*(v_sim_11./inlet_velocity);
x_sim_11 = x_loc_sim_11 + norm_sim_11 ;
z_sim_11 = z_loc_sim_11;
plot(x_sim_11,z_sim_11,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at -162 mm
data_exp_11 = xlsread('exp25.xlsx');
x_loc_exp_11 = data_exp_11(205:219,1);
z_loc_exp_11 = data_exp_11(205:219,3);
v_exp_11 = data_exp_11(205:219,8);
norm_exp_11 = alpha.*(v_exp_11./inlet_velocity);
x_exp_11 = x_loc_exp_11 + norm_exp_11;
z_exp_11 = z_loc_exp_11;
plot(x_exp_11,z_exp_11,"linewidth",1,"Color","b");
%Simulation at -112 mm
data_sim_12 = xlsread('num25ke.xlsx');
x_loc_sim_12 = data_sim_12(222:240,1);
z_loc_sim_12 = data_sim_12(222:240,2);
v_sim_12 = data_sim_12(222:240,3);
norm_sim_12 = alpha.*(v_sim_12./inlet_velocity);
x_sim_12 = x_loc_sim_12 + norm_sim_12 ;
z_sim_12 = z_loc_sim_12;
plot(x_sim_12,z_sim_12,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at -112 mm
data_exp_12 = xlsread('exp25.xlsx');
x_loc_exp_12 = data_exp_12(220:238,1);
z_loc_exp_12 = data_exp_12(220:238,3);
v_exp_12 = data_exp_12(220:238,8);
norm_exp_12 = alpha.*(v_exp_12./inlet_velocity);
x_exp_12 = x_loc_exp_12 + norm_exp_12;
z_exp_12 = z_loc_exp_12;
plot(x_exp_12,z_exp_12,"linewidth",1,"Color","b");
%Simulation at -62 mm
data_sim_13 = xlsread('num25ke.xlsx');
x_loc_sim_13 = data_sim_13(241:263,1);
z_loc_sim_13 = data_sim_13(241:263,2);
v_sim_13 = data_sim_13(241:263,3);
norm_sim_13 = alpha.*(v_sim_13./inlet_velocity);
x_sim_13 = x_loc_sim_13 + norm_sim_13 ;
z_sim_13 = z_loc_sim_13;
plot(x_sim_13,z_sim_13,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at -62 mm
data_exp_13 = xlsread('exp25.xlsx');
x_loc_exp_13 = data_exp_13(239:261,1);
z_loc_exp_13 = data_exp_13(239:261,3);
v_exp_13 = data_exp_13(239:261,8);
norm_exp_13 = alpha.*(v_exp_13./inlet_velocity);
x_exp_13 = x_loc_exp_13 + norm_exp_13;
z_exp_13 = z_loc_exp_13;
plot(x_exp_13,z_exp_13,"linewidth",1,"Color","b");
%Simulation at -12 mm
data_sim_14 = xlsread('num25ke.xlsx');
x_loc_sim_14 = data_sim_14(264:290,1);
z_loc_sim_14 = data_sim_14(264:290,2);
v_sim_14 = data_sim_14(264:290,3);
norm_sim_14 = alpha.*(v_sim_14./inlet_velocity);
x_sim_14 = x_loc_sim_14 + norm_sim_14 ;
z_sim_14 = z_loc_sim_14;
plot(x_sim_14,z_sim_14,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at -12 mm
data_exp_14 = xlsread('exp25.xlsx');
x_loc_exp_14 = data_exp_14(262:288,1);
z_loc_exp_14 = data_exp_14(262:288,3);
v_exp_14 = data_exp_14(262:288,8);
norm_exp_14 = alpha.*(v_exp_14./inlet_velocity);
x_exp_14 = x_loc_exp_14 + norm_exp_14;
z_exp_14 = z_loc_exp_14;
plot(x_exp_14,z_exp_14,"linewidth",1,"Color","b");
%Simulation at 38 mm
data_sim_15 = xlsread('num25ke.xlsx');
x_loc_sim_15 = data_sim_15(291:335,1);
z_loc_sim_15 = data_sim_15(291:335,2);
v_sim_15 = data_sim_15(291:335,3);
norm_sim_15 = alpha.*(v_sim_15./inlet_velocity);
x_sim_15 = x_loc_sim_15 + norm_sim_15 ;
z_sim_15 = z_loc_sim_15;
plot(x_sim_15,z_sim_15,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at 38 mm
data_exp_15 = xlsread('exp25.xlsx');
x_loc_exp_15 = data_exp_15(289:333,1);
z_loc_exp_15 = data_exp_15(289:333,3);
v_exp_15 = data_exp_15(289:333,8);
norm_exp_15 = alpha.*(v_exp_15./inlet_velocity);
x_exp_15 = x_loc_exp_15 + norm_exp_15;
z_exp_15 = z_loc_exp_15;
plot(x_exp_15,z_exp_15,"linewidth",1,"Color","b");
%Simulation at 88 mm
data_sim_16 = xlsread('num25ke.xlsx');
x_loc_sim_16 = data_sim_16(336:380,1);
z_loc_sim_16 = data_sim_16(336:380,2);
v_sim_16 = data_sim_16(336:380,3);
norm_sim_16 = alpha.*(v_sim_16./inlet_velocity);
x_sim_16 = x_loc_sim_16 + norm_sim_16 ;
z_sim_16 = z_loc_sim_16;
plot(x_sim_16,z_sim_16,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at 88 mm
data_exp_16 = xlsread('exp25.xlsx');
x_loc_exp_16 = data_exp_16(334:378,1);
z_loc_exp_16 = data_exp_16(334:378,3);
v_exp_16 = data_exp_16(334:378,8);
norm_exp_16 = alpha.*(v_exp_16./inlet_velocity);
x_exp_16 = x_loc_exp_16 + norm_exp_16;
z_exp_16 = z_loc_exp_16;
plot(x_exp_16,z_exp_16,"linewidth",1,"Color","b");
%Simulation at 138 mm
data_sim_17 = xlsread('num25ke.xlsx');
x_loc_sim_17 = data_sim_17(381:425,1);
z_loc_sim_17 = data_sim_17(381:425,2);
v_sim_17 = data_sim_17(381:425,3);
norm_sim_17 = alpha.*(v_sim_17./inlet_velocity);
x_sim_17 = x_loc_sim_17 + norm_sim_17 ;
z_sim_17 = z_loc_sim_17;
plot(x_sim_17,z_sim_17,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at 138 mm
data_exp_17 = xlsread('exp25.xlsx');
x_loc_exp_17 = data_exp_17(379:423,1);
z_loc_exp_17 = data_exp_17(379:423,3);
v_exp_17 = data_exp_17(379:423,8);
norm_exp_17 = alpha.*(v_exp_17./inlet_velocity);
x_exp_17 = x_loc_exp_17 + norm_exp_17;
z_exp_17 = z_loc_exp_17;
plot(x_exp_17,z_exp_17,"linewidth",1,"Color","b");
%Simulation at 188 mm
data_sim_18 = xlsread('num25ke.xlsx');
x_loc_sim_18 = data_sim_18(426:470,1);
z_loc_sim_18 = data_sim_18(426:470,2);
v_sim_18 = data_sim_18(426:470,3);
norm_sim_18 = alpha.*(v_sim_18./inlet_velocity);
x_sim_18 = x_loc_sim_18 + norm_sim_18 ;
z_sim_18 = z_loc_sim_18;
plot(x_sim_18,z_sim_18,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at 188 mm
data_exp_18 = xlsread('exp25.xlsx');
x_loc_exp_18 = data_exp_18(424:468,1);
z_loc_exp_18 = data_exp_18(424:468,3);
v_exp_18 = data_exp_18(424:468,8);
norm_exp_18 = alpha.*(v_exp_18./inlet_velocity);
x_exp_18 = x_loc_exp_18 + norm_exp_18;
z_exp_18 = z_loc_exp_18;
plot(x_exp_18,z_exp_18,"linewidth",1,"Color","b");
%Simulation at 238 mm
data_sim_19 = xlsread('num25ke.xlsx');
x_loc_sim_19 = data_sim_19(471:515,1);
z_loc_sim_19 = data_sim_19(471:515,2);
v_sim_19 = data_sim_19(471:515,3);
norm_sim_19 = alpha.*(v_sim_19./inlet_velocity);
x_sim_19 = x_loc_sim_19 + norm_sim_19 ;
z_sim_19 = z_loc_sim_19;
plot(x_sim_19,z_sim_19,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at 238 mm
data_exp_19 = xlsread('exp25.xlsx');
x_loc_exp_19 = data_exp_19(469:513,1);
z_loc_exp_19 = data_exp_19(469:513,3);
v_exp_19 = data_exp_19(469:513,8);
norm_exp_19 = alpha.*(v_exp_19./inlet_velocity);
x_exp_19 = x_loc_exp_19 + norm_exp_19;
z_exp_19 = z_loc_exp_19;
plot(x_exp_19,z_exp_19,"linewidth",1,"Color","b");
%Simulation at 288 mm
data_sim_20 = xlsread('num25ke.xlsx');
x_loc_sim_20 = data_sim_20(516:560,1);
z_loc_sim_20 = data_sim_20(516:560,2);
v_sim_20 = data_sim_20(516:560,3);
norm_sim_20 = alpha.*(v_sim_20./inlet_velocity);
x_sim_20 = x_loc_sim_20 + norm_sim_20 ;
z_sim_20 = z_loc_sim_20;
plot(x_sim_20,z_sim_20,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at 288 mm
data_exp_20 = xlsread('exp25.xlsx');
x_loc_exp_20 = data_exp_20(514:558,1);
z_loc_exp_20 = data_exp_20(514:558,3);
v_exp_20 = data_exp_20(514:558,8);
norm_exp_20 = alpha.*(v_exp_20./inlet_velocity);
x_exp_20 = x_loc_exp_20 + norm_exp_20;
z_exp_20 = z_loc_exp_20;
plot(x_exp_20,z_exp_20,"linewidth",1,"Color","b");
%Simulation at 338 mm
data_sim_21 = xlsread('num25ke.xlsx');
x_loc_sim_21 = data_sim_21(561:605,1);
z_loc_sim_21 = data_sim_21(561:605,2);
v_sim_21 = data_sim_21(561:605,3);
norm_sim_21 = alpha.*(v_sim_21./inlet_velocity);
x_sim_21 = x_loc_sim_21 + norm_sim_21 ;
z_sim_21 = z_loc_sim_21;
plot(x_sim_21,z_sim_21,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at 338 mm
data_exp_21 = xlsread('exp25.xlsx');
x_loc_exp_21 = data_exp_21(559:603,1);
z_loc_exp_21 = data_exp_21(559:603,3);
v_exp_21 = data_exp_21(559:603,8);
norm_exp_21 = alpha.*(v_exp_21./inlet_velocity);
x_exp_21 = x_loc_exp_21 + norm_exp_21;
z_exp_21 = z_loc_exp_21;
plot(x_exp_21,z_exp_21,"linewidth",1,"Color","b");
%Simulation at 438 mm
data_sim_22 = xlsread('num25ke.xlsx');
x_loc_sim_22 = data_sim_22(606:650,1);
z_loc_sim_22 = data_sim_22(606:650,2);
v_sim_22 = data_sim_22(606:650,3);
norm_sim_22 = alpha.*(v_sim_22./inlet_velocity);
x_sim_22 = x_loc_sim_22 + norm_sim_22 ;
z_sim_22 = z_loc_sim_22;
plot(x_sim_22,z_sim_22,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at 438 mm
data_exp_22 = xlsread('exp25.xlsx');
x_loc_exp_22 = data_exp_22(604:648,1);
z_loc_exp_22 = data_exp_22(604:648,3);
v_exp_22 = data_exp_22(604:648,8);
norm_exp_22 = alpha.*(v_exp_22./inlet_velocity);
x_exp_22 = x_loc_exp_22 + norm_exp_22;
z_exp_22 = z_loc_exp_22;
plot(x_exp_22,z_exp_22,"linewidth",1,"Color","b");
%Simulation at 538 mm
data_sim_23 = xlsread('num25ke.xlsx');
x_loc_sim_23 = data_sim_23(651:695,1);
z_loc_sim_23 = data_sim_23(651:695,2);
v_sim_23 = data_sim_23(651:695,3);
norm_sim_23 = alpha.*(v_sim_23./inlet_velocity);
x_sim_23 = x_loc_sim_23 + norm_sim_23 ;
z_sim_23 = z_loc_sim_23;
plot(x_sim_23,z_sim_23,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at 538 mm
data_exp_23 = xlsread('exp25.xlsx');
x_loc_exp_23 = data_exp_23(649:693,1);
z_loc_exp_23 = data_exp_23(649:693,3);
v_exp_23 = data_exp_23(649:693,8);
norm_exp_23 = alpha.*(v_exp_23./inlet_velocity);
x_exp_23 = x_loc_exp_23 + norm_exp_23;
z_exp_23 = z_loc_exp_23;
plot(x_exp_23,z_exp_23,"linewidth",1,"Color","b");
%Simulation at 638 mm
data_sim_24 = xlsread('num25ke.xlsx');
x_loc_sim_24 = data_sim_24(696:740,1);
z_loc_sim_24 = data_sim_24(696:740,2);
v_sim_24 = data_sim_24(696:740,3);
norm_sim_24 = alpha.*(v_sim_24./inlet_velocity);
x_sim_24 = x_loc_sim_24 + norm_sim_24 ;
z_sim_24 = z_loc_sim_24;
plot(x_sim_24,z_sim_24,"Marker","o","MarkerSize",5,"Color","r");
%Experimental at 638 mm
data_exp_24 = xlsread('exp25.xlsx');
x_loc_exp_24 = data_exp_24(694:738,1);
z_loc_exp_24 = data_exp_24(694:738,3);
v_exp_24 = data_exp_24(694:738,8);
norm_exp_24 = alpha.*(v_exp_24./inlet_velocity);
x_exp_24 = x_loc_exp_24 + norm_exp_24;
z_exp_24 = z_loc_exp_24;
plot(x_exp_24,z_exp_24,"linewidth",1,"Color","b");
h = [p1;p2;p3];
legend(h,"Ahmed body","Normalized Velocity Magnitude (U) - Simulation","Normalized Velocity Magnitude (U) - Experimantal","Location","best");
title("Comparison of Numerical and Experimantal Data of Ahmed body (Slant-25^{o}) for K-epsilon Turbulence Model in STAR-CCM+","FontSize",15);
xlabel("X-axis (mm)");
ylabel("Z-axis (mm)");
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
External Aerodynamics of a Mercedes Truck After Performing Surface Wrapping in STAR-CCM+
Surface Wrapping Surface wrapping is a method of extracting the desired surface with the desired volume of interest to perform CFD analysis. Surface wrapping does not incorporate all the minor details of the inside of the geometry, it only takes the outer detail of the geometry. When the CAD file contains a lot…
16 Feb 2020 02:12 PM IST
External flow Analysis of Ahmed body and Comparing the Numerical and Experimental data in STAR-CCM+.
Objective: Create the Ahmed Body slant for both 250 and 350 Run Steady-state implicit coupled flow simulation Use the turbulence models K-OmegsSST and k-epsilon Validate the velocity profile along the Ahmed body at different points with the experimental data. Calculate the cd and cl using the different turbulence.…
16 Feb 2020 01:45 PM IST
External flow analysis of NACA 0012 airfoil for different values of angle of attack in STAR - CCM+
NACA The NACA airfoils are airfoil shapes for aircraft wings developed by the National Advisory Committee for Aeronautics (NACA). The shape of the NACA airfoils is described using a series of digits following the word "NACA". The parameters in the numerical code can be entered into equations to precisely generate the cross-section…
29 Jan 2020 04:34 AM IST
Transient state analysis of Rayleigh Taylor instability in ANSYS FLUENT.
Objective Discuss some practical CFD models that have been based on the mathematical analysis of Rayleigh Taylor waves. And explain how these mathematical models have been adapted for CFD calculations. Perform the Rayleigh Taylor instability simulation for 3 different mesh sizes with the base mesh being 0.5 mm. Compare…
15 Jan 2020 09:52 AM IST
Related Courses
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.