All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
Non Conservation form Governing Equation for 1D Supersonic Nozzle 1) Continuity Equation ∂∂t(ρA)+∂∂x(ρAV)=0∂∂t(ρA)+∂∂x(ρAV)=0 2) Momentum Equation ρ∂V∂t+ρV∂V∂x=-∂p∂xρ∂V∂t+ρV∂V∂x=−∂p∂x 3) Energy Equation ρcv∂T∂t+ρVcv∂T∂x=-p∂V∂x-pV∂(lnA)∂xρcv∂T∂t+ρVcv∂T∂x=−p∂V∂x−pV∂(lnA)∂x We define…
Vivek Ramesh
updated on 27 Sep 2020
Non Conservation form Governing Equation for 1D Supersonic Nozzle
1) Continuity Equation
∂∂t(ρA)+∂∂x(ρAV)=0∂∂t(ρA)+∂∂x(ρAV)=0
2) Momentum Equation
ρ∂V∂t+ρV∂V∂x=-∂p∂xρ∂V∂t+ρV∂V∂x=−∂p∂x
3) Energy Equation
ρcv∂T∂t+ρVcv∂T∂x=-p∂V∂x-pV∂(lnA)∂xρcv∂T∂t+ρVcv∂T∂x=−p∂V∂x−pV∂(lnA)∂x
We define non dimensional variables as follows
1) T′=TTo
2) ρ′=ρρo
3) x′=xL
4) ao=√γRTo
5) V′=Vao
where T_o, rho_o,a_o are the temperature, density and speed of sound at the reservoir
Writing the governing equation in terms of non dimensional temperature,density and velocity.
1) Continuity Equation
∂ρ′∂t′=-ρ′∂V′∂x′-ρ′V′∂(lnA′)∂x′-V′∂p′∂x′
2) Momentum Equation
∂V′∂t′=-V′∂V′∂x′-(1γ)(∂T′∂x′+T′ρ′∂p′∂x′)
3) Energy Equation
∂T′∂t′=-V′∂T′∂x′-(γ-1)T′[∂V′∂x′+V′∂(lnA′)∂x′)]
Macormack Method
1) Predictor Step
In this step we solve the spatial derivatives in the governing equations as forward differences
a) Continuity Equation
(∂ρ∂t)t=-(ρti)(Vti+1-Vtidx)-ρtiVti(lnAi+1-lnAidx)-Vtiρti+1-ρtidx
b) Momentum Equation
(∂V∂t)t=-VtiVti+1-VtiΔx-1γ(Tti+1-TtiΔx+(Ttiρti)ρti+1-ρtiΔx)
c) Energy Equation
(∂T∂t)ti=-Vti(Tti+1-TtiΔx)-(γ-1)Tti(Vti+1-VtiΔx+VtilnAi+1-lnAiΔx)
Predicted Values can be obtained as follows
ˉρt+Δti=ρti+(∂ρ∂t)ti(Δt)
ˉVt+Δti=Vti+(∂V∂t)ti(Δt)
ˉTt+Δti=Tti+(∂T∂t)ti(Δt)
Corrector Step
In this step we write the spatial derivatives in the governing equations with rearward differences using the predicted (barred quantities)
a) Continuity Equation
((¯∂ρ∂t))ti=-(ˉρt+Δti)(ˉVt+Δti-ˉVt+Δti-1dx)-ˉρt+ΔtiˉVt+Δti(lnˉAi-lnAi-1dx)-Vt+Δtiρt+Δti-ρt+Δti-1dx
b) Momentum Equation
((¯∂V∂t)ti=-ˉVt+ΔtiˉVt+Δti-ˉVt+Δti-1Δx-1γ(ˉTt+ΔTi-ˉTt+Δti-1Δx+(ˉTt+Δtiˉρt+Δti)ˉρt+Δti-ˉρt+Δti-1Δx)
c) Energy Equation
(¯∂T∂t)t+Δti=-ˉVt+Δti(ˉTt+ΔTi-ˉTt+Δti-1Δx)-(γ-1)ˉTt+Δti(ˉVt+Δti-ˉVt+Δti-1Δx+ˉVt+ΔtilnˉAi-lnˉAi-1Δx)
Computation of Average Time Derivatives
(∂ρ∂t)av=0.5⋅[(∂ρ∂t)predicter+(¯∂ρ∂t)crrectr]
(∂V∂t)av=0.5⋅[(∂V∂t)predicter+(¯∂V∂t)crrectr]
(∂T∂t)av=0.5⋅[(∂T∂t)predicter+(¯∂T∂t)crrectr]
Corrected Values of Flow field Variables
ρt+Δti=ρti+(∂ρ∂t)av(Δt)
Vt+Δti=Vti+(∂V∂t)av(Δt)
Tt+Δti=Tti+(∂T∂t)av(Δt)
Calculation of Time Step
We calculate 'Deltat _i^t'at all grid points i=1 to i=N and choose the minimum value for use
Deltat=minimum('Deltat_1^t','Deltat_2^t',..........'Deltat_N^t')
Boundary Conditions
1 Subsonic Inflow Boundary Conditions (Point 1)
V1 is the inflow condition, ie point 1 on the grid. V2 and V3 are the next interior nodes. V1 is calculated as follows
V1=V2-V3-V2ΔxΔx
'V_1=2V_2-V_3
'rho_1=1' (Fixed independent of time)
'T_1=1'(Fixed independent of time)
Supersonic outflow boundary (Point N)
VN=2VN-1-VN-2
ρN=2ρN-1-ρN-2
TN=2TN-1-TN-2
Nozzle Shape
A=1+2.2(x-1.5)2
ρ=1-0.3146x
T=1-0.2314x
V=(0.1+1.09x)T12
Results
1) Flow Variables for Non Conservative Equation
From the above plot we note that pressure,temperature and density decrease along +ve X direction as the flow transitions from sonic to supersonic across the throat. The transition from sonic to supersonic is indicated by positive Mach number.
1) Timewise Variation of Density, Pressure and Temperature and Mach Number at nozzle throat.
From the above plot we note that the largest change in flow property takes place in the initial stage of the solution after which the steady state value is approached. At early times time derivatives are large and oscillate in value. At later stage these derivatives grow small rapidly.
Variation of Mass flow rate with time
The time wise Variation can also be seen from the above plot which shows the non dimensionalized mass flow rates at various time steps. We note a drastic change in profiles in the initial stages of the solution i.e 0 to 500 timesteps. However after 500 time steps the profile begins to settle down eventually coming to to straight line across the plot. This corresponds to the steady state solution where in mass flow rate is constant.
Demonstration of Grid Independence:- We tabulate the value of primitive variables at the throat for 31 and 61 grid points
No of Grid Point | Rho | T | p | M |
31 | 0.6387 | 0.8365 | 0.5342 | 0.9994 |
61 | 0.6373 | 0.8353 | 0.5323 | 0.9997 |
We note from the above table that the grid points do not change appreciably when the number of grid points change from 31 to 61. Therefore it can be said that the solution is grid independent at 31 points.
Conservative form of Governing Equations
Continuity Equation
∂(ρ′A′)∂T′+∂(ρ′A′V′)∂X′=0
Momentum Equation
∂(ρ′A′V′)∂t′+∂(ρ′A′V′2+(1γ)⋅(p′A′))∂x′=(1γ)p′∂A′∂x′
Energy Equation
∂[ρ′(e′γ-1+γ′2V′2)A′]∂t′+∂[ρ′(e′γ-1+γ′2V′2)A′V′+p′A′V′]∂x′=0
The above equations can be written in generic form in terms of 3 Vectors namely
1. Solution Vector U
2. Flux Vector F
3. Source Vector J
We define the above Variables as below
Pure Form of Flux terms
The modified Governing Equation is as follows
∂U1∂t′=-∂F1∂x′
∂U2∂t′=-∂F2∂x′+J2
∂U3∂t′=-∂F3∂x′
From the definition of U1,U2 and U3, we have
ρ′=U1A′
V′=U2U1
T′=e′=(γ-1)(U3U1-γ2V′2)
p′=ρ′T′
Boundary Conditions
Inlet Conditions (i=1)
U1(i=1)=(ρ′A′)i=1=A′i=1=fixedvalue
U2(i=1)=2U2(i=2)-U2(i=3)
U3=U1(T′γ-1+γ2V′2)
Outflow Boundary Conditions
(U1)N=2(U1)N-1-(U1)N-2
(U2)N=2(U2)N-1-(U2)N-2
(U3)N=2(U3)N-1-(U3)N-2
Initial Condtions
Variations for rho' and T'
For initial conditions only we define the Velocity as
Initial Conditions for U1,U2 and U3
Macormack Method is applied to the below equations in a similar manner as it was done for non conservation equations
∂U1∂t′=-∂F1∂x′
∂U2∂t′=-∂F2∂x′+J2
∂U3∂t′=-∂F3∂x′
Results
1) Variation of Flow variables for Conservative Equation
2) Timewise variation of density, pressure , Temperature and Mach Number at nozzle throat
Demonstration of Grid Independence;- We tabulate the value of primitive variables at the throat for 31 and 61 grid points
No of Grid Points | rho | T | p | M |
31 | 0.6383 | 0.8351 | 0.533 | 0.9992 |
61 | 0.6513 | 0.8404 | 0.5474 | 0.98 |
There is a slight variation between the two results when compared to the grid independence test performed for non conservative form.
Comparison of Conservation and Non Conservation Form
1. Conservation form yields better mass flow distribution when compared to non conservation form. It can be seen that the system converges to a steady state much earlier when compared to non conservation form
2. Conservation Form requires marginally more computational effort. We need to convert primitive variables into Flux vector, Solution Vector and source vector.
3. Non conservative form yields better results in the grid independence test.
%Main Program
clc
clear all
close all
n=31;
x=linspace(0,3,n);
dx=x(2)-x(1);
gamma=1.4;
nt=1500
for i=1:nt
NT(i)=i;
end
courant=0.5;
anc=1+(2.2*(x-1.5).^2)
[rhonc,Tnc,Vnc,pnc,Mnc,Densnc,Tempnc,Pressnc, Machnc,mflnc]=non_conservative(nt,courant,gamma,dx,x,n);
[rhoc,Tc,vc,pc,Mc,Densc,Tempc,Pressc,Machc,mflc]=conservative(nt,courant,gamma,dx,x,n);
a=rhonc(15)
b=Tnc(15)
c=pnc(15)
d=Mnc(15)
e=rhoc(16)
f=Tc(16)
g=pc(16)
h=Mc(16)
figure(1)
subplot(4,1,1)
plot(x,Mnc)
title('Flow Variables for Non Conservative Equation')
xlabel('Grid points')
ylabel('Mach Number')
grid on
subplot(4,1,2)
plot (x,rhonc)
xlabel('Grid points')
ylabel('Density')
grid on
subplot(4,1,3)
plot (x,Tnc)
xlabel('Grid points')
ylabel('Temperature')
grid on
subplot(4,1,4)
plot (x,pnc)
xlabel('Grid points')
ylabel('Pressure')
grid on
figure(2)
subplot(4,1,1)
plot(x,Mc)
xlabel('Grid points')
ylabel('Mach Number')
title('Flow Variables for Conservative Equation')
grid on
subplot(4,1,2)
plot (x,rhoc)
xlabel('Grid points')
ylabel('Density')
grid on
subplot(4,1,3)
plot (x,Tc)
xlabel('Grid points')
ylabel('Temperature')
grid on
subplot(4,1,4)
plot (x,pc)
xlabel('Grid points')
ylabel('Pressure')
grid on
figure(3)
subplot(4,1,1)
plot(NT,Densnc)
xlabel('No of Time Steps')
ylabel('density')
title('Timewise variation of density, pressure and temperature and Mach number at the nozzle throat-Non Conservative')
grid on
subplot(4,1,2)
plot (NT,Tempnc)
xlabel('No of Time Steps')
ylabel('Temperature')
grid on
subplot(4,1,3)
plot (NT, Pressnc)
xlabel('No of Time Steps')
ylabel('Pressure')
grid on
subplot(4,1,4)
plot (NT,Machnc)
xlabel('No of Time Steps')
ylabel('Mach No')
grid on
figure(4)
subplot(4,1,1)
plot(NT,Densc)
xlabel('No of Time Steps')
ylabel('density')
title('Timewise variation of density, pressure and temperature and Mach number at the nozzle throat-Conservative')
grid on
subplot(4,1,2)
plot (NT,Tempc)
xlabel('No of Time Steps')
ylabel('Temperature')
grid on
subplot(4,1,3)
plot (NT, Pressc)
xlabel('No of Time Steps')
ylabel('Pressure')
grid on
subplot(4,1,4)
plot (NT,Machc)
xlabel('No of Time Steps')
ylabel('Mach No')
grid on
figure(5)
plot(x,mflc(1,:),'k')
title('Variation of mass flow rate with time- Conservative')
hold on
plot(x,mflc(50,:),'k','LineStyle','--')
hold on
plot(x,mflc(100,:),'k','LineStyle','-.')
hold on
plot(x,mflc(150,:),'k','Marker','*')
hold on
plot(x,mflc(200,:),'k','Marker','o')
hold on
plot(x,mflc(500,:),'k','LineStyle','--','Marker','o')
hold on
plot(x,mflc(1000,:),'k','LineStyle','-','Marker','d')
legend('Timestep 0','Timestep 50','Timestep 100','Timestep 150','Timestep 200','Timestep 500','Timestep 1000')
xlabel ('Non Dimensionalized distance in x direction')
ylabel('Mass Flow rate')
figure(6)
plot(x,mflnc(1,:),'k')
title('Variation of mass flow rate with time- Non Conservative')
hold on
plot(x,mflnc(50,:),'k','LineStyle','--')
hold on
plot(x,mflnc(100,:),'k','LineStyle','-.')
hold on
plot(x,mflnc(150,:),'k','Marker','*')
hold on
plot(x,mflnc(200,:),'k','Marker','o')
hold on
plot(x,mflnc(500,:),'k','LineStyle','--','Marker','o')
hold on
plot(x,mflnc(1000,:),'k','LineStyle','-','Marker','d')
legend('Timestep 0','Timestep 50','Timestep 100','Timestep 150','Timestep 200','Timestep 500','Timestep 1000')
xlabel ('Non Dimensionalized distance in x direction')
ylabel('Mass Flow rate')
figure (7)
plot(x,rhonc,'Linestyle','-','Marker','o')
hold on
plot(x,rhoc,'Linestyle','-','Marker','d')
legend('Non Conservative','Conservative')
%Non Conservative Part Code
function [rhonc,Tnc,Vnc,pnc,Mnc,Densnc,Tempnc,Pressnc, Machnc,mflnc]=non_conservative(nt,courant,gamma,dx,x,n)
%initial profiles
rhonc=1-0.3146*x;
Tnc=1-0.2134*x;
Vnc=(0.1+1.09*x).*Tnc.^0.5;
a=1+2.2*(x-1.5).^2;
for k=1:nt
dt=min(courant.*(dx./(Tnc.^0.5+Vnc)));
rho_old=rhonc;
T_old=Tnc;
V_old=Vnc;
for j=2:n-1
%Predictor Step
%Continuity Equation
dVdx=(( Vnc(j+1)-Vnc(j))/dx);
dlogadx=(log(a(j+1))-log(a(j)))/dx;
drhodx=(rhonc(j+1)-rhonc(j))/dx;
dTdx=(Tnc(j+1)-Tnc(j))/dx;
Term1 =-rhonc(j)*(dVdx) ;
Term2=-rhonc(j)*Vnc(j)*(dlogadx);
Term3=-Vnc(j)*(drhodx) ;
drhodt_p(j)= Term1+Term2+Term3;
%Momentum Equation
Term4=-Vnc(j)*(dVdx) ;
Term5=-(1/gamma)*(dTdx);
Term6=-(1/gamma)*(Tnc(j)/rhonc(j))*(drhodx);
dVdt_p(j)=Term4+Term5+Term6;
%Energy Equation
Term7=-Vnc(j)*(dTdx) ;
Term8=-(gamma-1)*Tnc(j)*(dVdx);
Term9=-(gamma-1)*Tnc(j)*Vnc(j)*(dlogadx);
dTdt_p(j)= Term7+Term8+Term9;
Vnc(j)=Vnc(j)+dVdt_p(j)*dt;
rhonc(j)=rhonc(j)+ drhodt_p(j)*dt;
Tnc(j)= Tnc(j)+ dTdt_p(j)*dt;
end
for j=2:n-1
%Corrector Step
%Continuity Equation
dVdx=(( Vnc(j)-Vnc(j-1))/dx);
dlogadx=(log(a(j))-log(a(j-1)))/dx;
drhodx=(rhonc(j)-rhonc(j-1))/dx;
dTdx=(Tnc(j)-Tnc(j-1))/dx;
Term1 =-rhonc(j)*(dVdx) ;
Term2=-rhonc(j)*Vnc(j)*(dlogadx);
Term3=-Vnc(j)*(drhodx) ;
drhodt_c(j)= Term1+Term2+Term3;
%Momentum Equation
Term4=-Vnc(j)*(dVdx) ;
Term5=-(1/gamma)*(dTdx);
Term6=-(1/gamma)*(Tnc(j)/rhonc(j))*(drhodx);
dVdt_c(j)=Term4+Term5+Term6;
%Energy Equation
Term7=-Vnc(j)*(dTdx) ;
Term8=-(gamma-1)*Tnc(j)*(dVdx);
Term9=-(gamma-1)*Tnc(j)*Vnc(j)*(dlogadx);
dTdt_c(j)= Term7+Term8+Term9;
end
% Computing Average Time derivative
drhodt=0.5*(drhodt_c+drhodt_p);
dVdt= 0.5*( dVdt_c+ dVdt_p);
dTdt=0.5*(dTdt_c+ dTdt_p);
for i=2:n-1
% Final Solution Update
Vnc(i)=V_old(i)+dVdt(i)*dt;
rhonc(i)=rho_old(i)+drhodt(i)*dt;
Tnc(i)=T_old(i)+dTdt(i)*dt;
pnc=rhonc.*Tnc;
Mnc=Vnc./(Tnc.^0.5);
if i==16
Densnc(k)=rhonc(i);
Tempnc(k)=Tnc(i);
Pressnc(k)=pnc(i);
Machnc(k)=Mnc(i);
end
end
%Apply Boundary Conditions
Vnc(1)=2*Vnc(2)-Vnc(3);%Inlet
%Outlet
Vnc(n)=2*Vnc(n-1)-Vnc(n-2);
rhonc(n)=2*rhonc(n-1)-rhonc(n-2);
Tnc(n)=2*Tnc(n-1)-Tnc(n-2);
pnc=rhonc.*Tnc;
Mnc=Vnc./(Tnc.^0.5);
mflnc(k,:)=rhonc.*Vnc.*a;
end
end
%Conservative
function [rhoc,Tc,vc,pc,Mc,Densc,Tempc,Pressc,Machc,mflc]=conservative(nt,courant,gamma,dx,x,n)
%initial profiles
a=1+(2.2*(x-1.5).^2);%area
for i=1:n
if(x(i)>=0&&x(i)<=0.5)
rhoc(i)=1;
Tc(i)=1;
elseif(x(i)>=0.5&&x(i)<=1.5)
rhoc(i)=1-0.366*(x(i)-0.5);
Tc(i)=1-0.167*(x(i)-0.5);
elseif(x(i)>=1.5 && x(i)<=3.0)
rhoc(i)=0.634-0.3879*(x(i)-1.5);
Tc(i)=0.833-0.3507*(x(i)-1.5);
end
end
vc=0.59./(rhoc.*a);
u1=rhoc.*a;
u2=rhoc.*a.*vc;
u3=u1.*((Tc./(gamma-1))+((gamma/2).*(vc.^2)));
for k=1:nt
u1_old=u1;
u2_old=u2;
u3_old=u3;
dt=min(courant.*(dx./(Tc.^0.5+vc)));
%flux terms
f1 = u2;
f2 = ((u2.^2)./u1) + (((gamma-1)/gamma)*(u3 - ((gamma*0.5*(u2.^2))./u1)));
f3 = ((gamma*u2.*u3)./u1) - ((gamma*0.5*(gamma-1)*(u2.^3))./(u1.^2));
for j=2:n-1
dadx=(a(j+1)-a(j))/dx ;
j2=(rhoc(j)*Tc(j)*dadx)/gamma;
%Predictor Step
du1dt_p(j)=-(f1(j+1)-f1(j))/dx ;%Continuity Equation
du2dt_p(j)=-(f2(j+1)-f2(j))/dx + j2;%Momentum Equation
du3dt_p(j)=-(f3(j+1)-f3(j))/dx; %Energy Equation
%Solution update
u1(j)=u1(j)+du1dt_p(j)*dt;
u2(j)=u2(j)+du2dt_p(j)*dt;
u3(j)=u3(j)+du3dt_p(j)*dt;
end
rho_p=u1./a;
v_p=u2./u1;
T_p=(gamma-1)*((u3./u1)-(gamma/2)*(v_p.^2));
f1 = u2;
f2 = ((u2.^2)./u1) + (((gamma-1)/gamma)*(u3 - ((gamma*0.5*(u2.^2))./u1)));
f3 = ((gamma*u2.*u3)./u1) - ((gamma*0.5*(gamma-1)*(u2.^3))./(u1.^2));
for j=2:n-1
dadx=(a(j)-a(j-1))/dx ;
j2=(rhoc(j)*Tc(j)*dadx)/gamma;
%Corrector Step
du1dt_c(j)=-(f1(j)-f1(j-1))/dx ;%Continuity Equation
du2dt_c(j)= -(f2(j)-f2(j-1))/dx + j2;%Momentum Equation
du3dt_c(j)=-(f3(j)-f3(j-1))/dx; %Energy Equation
end
% Computing Average Time derivative
du1dt=0.5*(du1dt_p+du1dt_c);
du2dt=0.5*(du2dt_p+du2dt_c);
du3dt=0.5*(du3dt_p+du3dt_c);
for i=2:n-1
% Final Solution Update
u1(i)=u1_old(i) +du1dt(i)*dt;
u2(i)=u2_old(i) +du2dt(i)*dt;
u3(i)=u3_old(i) +du3dt(i)*dt;
end
%Apply Boundary Conditions
u1(1)=rho_p(1)*a(1) ;
u2(1)=2*u2(2)-u2(3);
v_p(1)=u2(1)/u1(1);
u3(1)=u1(1)*((T_p(1)/(gamma-1))+((gamma/2)*(v_p(1)^2)));
%Outlet
u1(n)=2*u1(n-1)-u1(n-2);
u2(n)=2*u2(n-1)-u2(n-2);
u3(n)=2*u3(n-1)-u3(n-2);
rhoc=u1./a;
vc=u2./u1;
Tc=(gamma-1)*((u3./u1)-(gamma/2)*(v_p.^2));
mass(k,:)=rhoc.*vc.*a;
pc=rhoc.*Tc;
Mc=vc./(Tc.^0.5);
mflc(k,:)=rhoc.*vc.*a;
Densc(k)=rhoc(16);
Tempc(k)=Tc(16);
Pressc(k)=pc(16);
Machc(k)=Mc(16);
end
end
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
Week - 4
Task 1 - Washing Machine Aim:- To implement Control Logic of a Washing Machine that would function as follows:- If the power supply is available, the system gets activated If the Water supply is not available, stop the process & indicate through LED Soaking time should be 200s followed by Washing time of 100s.…
20 Jan 2022 06:31 AM IST
Week -2
Model of a Doorbell:- The model of the door bell used for the simulation is given below. The details of the components are as follows 1. Pulse Generator:- This block generates a pulse of amplitude 1 for a duration of 2 seconds. This signal is converted to a physical signal using a converter block 2. Physical Signal…
18 Jan 2022 04:32 AM IST
Week-11 : Discretization of 3D intake manifold using GEM-3D
Part 1. 1) The study is done on a single cylinder diesel engine Discretization length : Specifies the length of each sub volume where quantities are calculated (Pressure, temperature, mass fractions etc) There are two case setup namely 40mm and 0.1mm Comparison of results We analyse the…
02 Sep 2021 03:19 PM IST
Week 9 - Senstivity Analysis Assignment
Aim:- The aim of this project is to find 10 most sensitive reactions affecting temperature of methane air combustion. Introduction:- Chemical reactions comprise a number of intermediary reactions and species. Attempting to simulate the detailed intermediary steps is computationally expensive. An alternative, to this approach…
17 Aug 2021 05:30 AM IST
Related Courses
0 Hours of Content
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.