All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
Compact Notation Derivation for a Simple Mechanism Objective: To derive the reaction rate ODEs of a simple reaction mechanism learnt in the chemical…
AKSHAY UNNIKRISHNAN
updated on 15 Apr 2021
Compact Notation Derivation for a Simple Mechanism
Objective:
To derive the reaction rate ODEs of a simple reaction mechanism learnt in the chemical kinetics lectures.
Reaction Mechanism i
CO + O2 ⇌ CO2 + O R1
O + H2o ⇌ OH + OH R2
CO + OH ⇌ CO2 + H R3
H + O2 ⇌ OH + O R4
j=species
1 | 2 | 3 | 4 | 5 | 6 | 7 |
CO | O2 | CO2 | O | H2O | OH | H |
kf=forward reaction coefficient kr=reverse reaction coefficient
d[CO]dt=-kf1[CO][o2]+kr1[CO2][O]-kf3[CO][OH]+kr3[CO2][H]d[CO]dt=−kf1[CO][o2]+kr1[CO2][O]−kf3[CO][OH]+kr3[CO2][H]
d[O2]dt=-kf1[CO][O2]+kr1[CO2][O]-kf4[h][O2]+kr3[OH][O]d[O2]dt=−kf1[CO][O2]+kr1[CO2][O]−kf4[h][O2]+kr3[OH][O]
d[CO2]dt=kf1[CO][O2]-kr1[CO2][O]+kf3[CO][OH]-kr3[CO2][H]d[CO2]dt=kf1[CO][O2]−kr1[CO2][O]+kf3[CO][OH]−kr3[CO2][H]
d[O]dt=kf1[CO][O2]-kr1[CO2][O]-kf2[O][H2O]+kr2[OH][OH]+kf4[H][O2]-kr4[OH][O]d[O]dt=kf1[CO][O2]−kr1[CO2][O]−kf2[O][H2O]+kr2[OH][OH]+kf4[H][O2]−kr4[OH][O]
d[H2O]dt=-kf2[O][H2O]+kr2[OH][OH]d[H2O]dt=−kf2[O][H2O]+kr2[OH][OH]
d[OH]dt=2⋅(kf2[O][H2O]-kr2[OH][OH])-kf3[CO][OH]+kr3[CO2][H]+kf4[H][O2]-kr4[OH][O]d[OH]dt=2⋅(kf2[O][H2O]−kr2[OH][OH])−kf3[CO][OH]+kr3[CO2][H]+kf4[H][O2]−kr4[OH][O]
d[H]dt=kf3[CO][Oh]-kr3[CO2][H]-kf4[H][O2]+kr4[OH][O]d[H]dt=kf3[CO][Oh]−kr3[CO2][H]−kf4[H][O2]+kr4[OH][O]
Defining the reactant matrix
vji'=[1100000000110010000100100001]
product matrix
vji''=[0011000000002000100010001010]
net reaction rate
vji=vji''-vji=[-1-111000000-1-120-10100-110-10101-1]
we have
`i=(kfij=1N∏[Xj]Vji′)-(krij=1N∏[Xj]Vji′′
there fore
from i 1 to 4
q1=kfq[CO]1[O2]1-kr1[CO2]1[O]1
q2=kf2[O]1[H2O]1-kr2[OH]2
q3=kf3[CO]1[OH]1-kr3[CO2]1[H]1
q4=kf4[O2]1[H]1-kr4[O]1[OH]1
since for each species there is an production rate
then the rate of concentration change of a particular species is given by
Wj=d[Xj]dt
by summing up
Wj=L∑(i=1)vjtqi
where L is the number of reaction
we will get a stiff ODE system
(w1w2w3w4w5w6w7)=[-10-10-100-110101-1010-10002-1-1001-1]⋅(q1q2q3q4)
w1=d[CO]dt=-q1-q3
d[CO]dt=-kf1[CO]1[O2]1+kr1[CO2]1[O]1-kf3[CO]1[OH]1+kr3[CO2]1[H]1
w2=d[O2]dt=-q1-q4
d[O2]dt=-kf1[CO]1[O2]1+kr1[CO2]1[O]1-kf4[H]1[O2]1+kr3[OH]1[O]1
w3=d[Co2]dt=q1+q3
d[CO2]dt=kf1[CO]1[O2]1-kr1[CO2]1[O]1+kf3[CO]1[OH]1-kr3[CO2]1[H]1
w4=d[O]dt=q1-q2+q4
d[O]dt=kf1[CO]1[O2]1-kr1[CO2]1[O]1-kf2[O]1[H2O]1+kr2[OH]2+kf4[H]1[O2]1-kr4[OH]1[O]1
w5=d[H2O]dt=-q2
d[H2O]dt=-kf2[O]1[H2O]1+kr2[OH]2
w6=d[OH]dt=2q2-q3+q4
d[OH]dt=2⋅(kf2[O]1[H2O]1-kr2[OH]2)-kf3[CO]1[OH]1+kr3[CO2]1[H]1+kf4[H]1[O2]1-kr4[OH]1[O]1
w7=d[H]dt=q3-q4
d[H]dt=kf3[CO]1[OH]1-kr3[CO2]1[H]1-kf4[H]1[O2]1+kr4[OH]1[O]1
Conclusion;
Since this ODE is a stiff ODE we need implicit scheme to solve while explicit scheme like euler won't work out
By following this method we can predict reaction pathways by deriving the ODE Reaction rate
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
Week 6 - Multivariate Newton Rhapson Solver
MULTIVARIATE NEWTON RAPHSON SOLVER FOR ODE'S Objective Solve the problem using Implicit Euler Method/Backward Differencing, assume…
05 Jul 2021 07:51 PM IST
Week 9 - Senstivity Analysis Assignment
…
02 Jun 2021 02:06 PM IST
Week 7 - Auto ignition using Cantera
AUTO IGNITION USING CANTERA Objective To detrmine auto ignition and ignition delay time for methane combustion reaction for various…
02 Jun 2021 08:48 AM IST
Week 5.2 - Literature review: ODE Stability
ODE STABILITY Objective Literature review of ODE stability Theory Numerical solution schemes are often referred…
25 Apr 2021 12:30 PM IST
Related Courses
0 Hours of Content
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.