All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
Aim : To simulate a flow through a pipe using icoFoam solver in OpenFoam. A section of pipe (wedge-shaped geometry) is selected for the simulation to reduce is computational time. Theory : Entrance Length refers to the distance in which the fluid travels afters entering a pipe before the full development of the flow. When…
Sridhara Kumudavalli
updated on 04 Feb 2020
Aim : To simulate a flow through a pipe using icoFoam solver in OpenFoam. A section of pipe (wedge-shaped geometry) is selected for the simulation to reduce is computational time.
Theory :
Entrance Length refers to the distance in which the fluid travels afters entering a pipe before the full development of the flow. When the boundary layer expands to fill the entire pipe the developing flow becomes a fully developed flow. In case of a fully developed flow, flow properties no longer change with increased distance along the pipe.
The hydrodynamic entrance region refers to that area of pipe where fluid entering the pipe develops a velocity profile due to viscous forces spreading from pipe\'s interior wall. This region has a non-uniform flow and termed as boundary layer. The viscosity is responsible for what we call as no-slip condition. When a fluid is in contact with the pipe surface, the fluid is resistant to the acceleration of its neighbouring layers and due to above no-slip condition a region of significant deformation i.e. significant velocity gradient is formed.
Entrance Length = Development Length, L for a flow in a pipe
For Laminar Flow : LD=0.06⋅Re
Therefore, L=0.06⋅Re⋅D
For the simulation we need to find some properties or flow variables as mentioned below.
Flow Variables:
The working fluid is water.
Hagen-Poiseuille Solution:
Matlab Program :
We will be writing a code to create a openfoam \'blockMeshDict\' file.
% To generate blockMeshDict.txt file for a provided wedge angle
clear all
close all
clc
%Input Parameters
Re = 2100; %Reynold\'s Number
D = 0.004; %Dia of pipe
r = D/2; %Radius of pipe
L_ent = 0.06*Re*D; %Entrance length of the pipe
fprintf(\'Enter 2, 3, 4 or 5 degrees for wedge angle\\n\');
theta = input(\'Enter wedge angle in degrees:\'); %Angle of wedge
mu = 0.89e-3; %Viscosity of water at 25 degree celsius
rho = 997.0; %Density of water at 25 degree celsius
nu = mu/rho; %Kinematic Viscosity of water at 25 degree celsius
%Calculation of Pressure and velocity (Hagen poiseuille flow equations)
L = L_ent + 0.5; %total length of pipe
v_avg = (Re*mu)/(D*rho); %Average velocity
v_max = 2*v_avg; %Max Velocity
del_P = (32*mu*v_avg*L)/(D^2); %Pressure drop
kin_P = del_P/rho; %Kinematic pressure drop
%calculating Shear Stress
R=linspace(0, (D),1000);
for i=1:length(R)
tau(i) = 2*mu*v_max*(abs(R(i)))/r^2;
end
figure(1)
plot(R,tau)
xlabel(\'Distance in Y Direction\');
ylabel(\'Shear Stress\')
grid on
legend(\'Shear Stress\')
title(\'Shear Stress (Analytical Solution)\')
%Calculation of vertices
v0 = [0 0 0];
v1 = [0 r*cosd(theta/2) r*sind(theta/2)];
v2 = [0 r*cosd(theta/2) -r*sind(theta/2)];
v3 = [L 0 0];
v4 = [L r*cosd(theta/2) r*sind(theta/2)];
v5 = [L r*cosd(theta/2) -r*sind(theta/2)];
%String format to specify blockMeshDict file
f1 = fopen(\'BlockMeshDict.txt\',\'w\');
fprintf(f1,\'%s\\n\',\'/*---------------------------------*- C++ -*----------------------------------*\\\')
fprintf(f1,\'%s\\n\',\' ========= | \');
fprintf(f1,\'%s\\n\',\' \\\\ / F ield | OpenFoam: The Open Source CFD Toolbox \');
fprintf(f1,\'%s\\n\',\' \\\\ / O peration | Website: https://openfoam.org \');
fprintf(f1,\'%s\\n\',\' \\\\ / A nd | Version: 7 \');
fprintf(f1,\'%s\\n\',\' \\\\/ M anipulation | \');
fprintf(f1,\'%s\\n\',\'\\*---------------------------------*- C++ -*----------------------------------*/\')
fprintf(f1,\'%s\\n\',\'FoamFile\');
fprintf(f1,\'%s\\n\',\'{\');
fprintf(f1,\'%s\\n\',\' version 2.0;\');
fprintf(f1,\'%s\\n\',\' format ascii;\');
fprintf(f1,\'%s\\n\',\' class dictionary;\');
fprintf(f1,\'%s\\n\',\' object blockMeshDict;\');
fprintf(f1,\'%s\\n\',\'}\');
fprintf(f1,\'%s\\n\\n\',\'//* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *//\');
fprintf(f1,\'%s\\n\\n\',\'convertToMeters 1;\');
%Defining the vertices of geometry
fprintf(f1,\'%s\\n\',\'vertices\');
fprintf(f1,\'%s\\n\',\'(\');
fprintf(f1,\'\\t(%d %d %d)\\n\',v0(1),v0(2),v0(3));
fprintf(f1,\'\\t(%d %d %d)\\n\',v1(1),v1(2),v1(3));
fprintf(f1,\'\\t(%d %d %d)\\n\',v2(1),v2(2),v2(3));
fprintf(f1,\'\\t(%d %d %d)\\n\',v3(1),v3(2),v3(3));
fprintf(f1,\'\\t(%d %d %d)\\n\',v4(1),v4(2),v4(3));
fprintf(f1,\'\\t(%d %d %d)\\n\',v5(1),v5(2),v5(3));
fprintf(f1,\'%s\\n\\n\',\');\');
%Defining Blocks
fprintf(f1,\'%s\\n\',\'blocks\');
fprintf(f1,\'%s\\n\',\'(\');
fprintf(f1,\'\\thex (0 3 5 2 0 3 4 1) (%d %d %d) simpleGrading (1 0.1 1)\\n\',300,30,1);
fprintf(f1,\'%s\\n\\n\',\');\');
%Defining the edges
fprintf(f1,\'%s\\n\',\'edges\');
fprintf(f1,\'%s\\n\',\'(\');
fprintf(f1,\'\\tarc %d %d (%d %d %d)\\n\',1,2,0,r,0);
fprintf(f1,\'\\tarc %d %d (%d %d %d)\\n\',4,5,L,r,0);
fprintf(f1,\'%s\\n\\n\',\');\');
%Defining the Boundaries
fprintf(f1,\'%s\\n\',\'boundary\');
fprintf(f1,\'%s\\n\',\'(\');
fprintf(f1,\'\\taxis\\n\\t{\\n\');
fprintf(f1,\'\\t\\ttype empty;\\n\');
fprintf(f1,\'\\t\\tfaces\\n\\t\\t(\\n\');
fprintf(f1,\'\\t\\t\\t(0 3 3 0)\\n\');
fprintf(f1,\'\\t\\t);\\n\\t}\\n\');
fprintf(f1,\'\\twall\\n\\t{\\n\');
fprintf(f1,\'\\t\\ttype wall;\\n\');
fprintf(f1,\'\\t\\tfaces\\n\\t\\t(\\n\');
fprintf(f1,\'\\t\\t\\t(1 4 5 2)\\n\');
fprintf(f1,\'\\t\\t);\\n\\t}\\n\');
fprintf(f1,\'\\tinlet\\n\\t{\\n\');
fprintf(f1,\'\\t\\ttype patch;\\n\');
fprintf(f1,\'\\t\\tfaces\\n\\t\\t(\\n\');
fprintf(f1,\'\\t\\t\\t(0 1 2 0)\\n\');
fprintf(f1,\'\\t\\t);\\n\\t}\\n\');
fprintf(f1,\'\\toutlet\\n\\t{\\n\');
fprintf(f1,\'\\t\\ttype patch;\\n\');
fprintf(f1,\'\\t\\tfaces\\n\\t\\t(\\n\');
fprintf(f1,\'\\t\\t\\t(3 5 4 3)\\n\');
fprintf(f1,\'\\t\\t);\\n\\t}\\n\');
fprintf(f1,\'\\tfront\\n\\t{\\n\');
fprintf(f1,\'\\t\\ttype wedge;\\n\');
fprintf(f1,\'\\t\\tfaces\\n\\t\\t(\\n\');
fprintf(f1,\'\\t\\t\\t(0 3 4 1)\\n\');
fprintf(f1,\'\\t\\t);\\n\\t}\\n\');
fprintf(f1,\'\\tback\\n\\t{\\n\');
fprintf(f1,\'\\t\\ttype wedge;\\n\');
fprintf(f1,\'\\t\\tfaces\\n\\t\\t(\\n\');
fprintf(f1,\'\\t\\t\\t(0 2 5 3)\\n\');
fprintf(f1,\'\\t\\t);\\n\\t}\\n\');
fprintf(f1,\');\\n\\n\');
fprintf(f1,\'mergePatchPairs\\n(\\n);\\n\\n\');
fprintf(f1,\'//***********************************************************************************//\');
fclose(f1)
The output we obtain from the above matlab code would be a \"blockMeshDict.txt\" file. The below text file was generated for a wedge angle of 3 degree.
/*---------------------------------*- C++ -*----------------------------------*\\
========= |
\\\\ / F ield | OpenFoam: The Open Source CFD Toolbox
\\\\ / O peration | Website: https://openfoam.org
\\\\ / A nd | Version: 7
\\\\/ M anipulation |
\\*---------------------------------*- C++ -*----------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object blockMeshDict;
}
//* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *//
convertToMeters 1;
vertices
(
(0 0 0)
(0 1.999315e-03 5.235390e-05)
(0 1.999315e-03 -5.235390e-05)
(1.004000e+00 0 0)
(1.004000e+00 1.999315e-03 5.235390e-05)
(1.004000e+00 1.999315e-03 -5.235390e-05)
);
blocks
(
hex (0 3 5 2 0 3 4 1) (300 30 1) simpleGrading (1 0.1 1)
);
edges
(
arc 1 2 (0 2.000000e-03 0)
arc 4 5 (1.004000e+00 2.000000e-03 0)
);
boundary
(
axis
{
type empty;
faces
(
(0 3 3 0)
);
}
wall
{
type wall;
faces
(
(1 4 5 2)
);
}
inlet
{
type patch;
faces
(
(0 1 2 0)
);
}
outlet
{
type patch;
faces
(
(3 5 4 3)
);
}
front
{
type wedge;
faces
(
(0 3 4 1)
);
}
back
{
type wedge;
faces
(
(0 2 5 3)
);
}
);
mergePatchPairs
(
);
//***********************************************************************************//
ControlDict File
/*--------------------------------*- C++ -*----------------------------------*\\
========= |
\\\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\\\ / O peration | Website: https://openfoam.org
\\\\ / A nd | Version: 7
\\\\/ M anipulation |
\\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location \"system\";
object controlDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
application icoFoam;
startFrom startTime;
startTime 0;
stopAt endTime;
endTime 1;
deltaT 0.001;
writeControl timeStep;
writeInterval 20;
purgeWrite 0;
writeFormat ascii;
writePrecision 6;
writeCompression off;
timeFormat general;
timePrecision 6;
runTimeModifiable true;
// ************************************************************************* //
The boundary condition for the above simulation is set in the folder \'0\'.
Velocity Boundary Condition
/*--------------------------------*- C++ -*----------------------------------*\\
========= |
\\\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\\\ / O peration | Website: https://openfoam.org
\\\\ / A nd | Version: 7
\\\\/ M anipulation |
\\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class volVectorField;
object U;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [0 1 -1 0 0 0 0];
internalField uniform (0.4687 0 0);
boundaryField
{
axis
{
type empty;
}
wall
{
type fixedValue;
value uniform (0 0 0);
}
inlet
{
type fixedValue;
value uniform (0.4687 0 0);
}
outlet
{
type zeroGradient;
}
front
{
type wedge;
}
back
{
type wedge;
}
}
// ************************************************************************* //
Pressure Boundary Condition
/*--------------------------------*- C++ -*----------------------------------*\\
========= |
\\\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\\\ / O peration | Website: https://openfoam.org
\\\\ / A nd | Version: 7
\\\\/ M anipulation |
\\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object p;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [0 2 -2 0 0 0 0];
internalField uniform 0;
boundaryField
{
axis
{
type empty;
}
wall
{
type zeroGradient;
}
inlet
{
type zeroGradient;
}
outlet
{
type fixedValue;
value uniform 0.8401;
}
front
{
type wedge;
}
back
{
type wedge;
}
}
// ************************************************************************* //
Transport Properties
/*--------------------------------*- C++ -*----------------------------------*\\
========= |
\\\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\\\ / O peration | Website: https://openfoam.org
\\\\ / A nd | Version: 7
\\\\/ M anipulation |
\\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location \"constant\";
object transportProperties;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
nu [0 2 -1 0 0 0 0] 0.892e-6;
// ************************************************************************* //
Results :
The generated geometry for a wedge angle of 3 degree is as shown below:
The generated mesh for a wedge angle of 3 degree is as shown below:
Results of Velocity Profile at the entrance of the pipe:
Results of Velocity Profile at the end of the pipe:
Velocity Profiles at various distances:
From the above graph we can see that the velocity is around 0.46 which is the initial boundary condition which was given and the flow is about to develop.
We can clearly see that there is an increase in the velocity and the profile slowly turns out to be a parabolic shape. From this we can say that the flow is developing slowly.
When length is 0.504m, the flow is fully developed and a maxium velocity is obtained. The value 0.504m is the calculated length for the laminar flow whose reynolds number is 2100 and for a diameter of 0.04m. This profile has attained its saturation and from now on the profile will be similar to the above graph.
From the above graph we can see that once the profile is fully developed, the velocity profile remains unchanged.
Also below we can see the pressure profile over the entire length of pipe
Comparision for different Wedge Angle
Shear Stress
When a fluid is in motion shear stresses are developed due to particles in the fluid moving relative to one another. For a fluid flowing through a pipe the fluid velocity will be equal to zero at the wall. Velocity increases as the fluid flows through the center of the pipe. Shear Forces are normally present because of the interaction of fluid with the adjacent layers moving at different velocities. Fluids which obey newton\'s law and whose mu value is constant are known as Newtonian Fluids. If mu is constant the shear stressis linearly dependent on the velocity gradient.
Analytical Shear Stress: The analytical shear stress is calculated in the above matlab code which is used for creating the blockMeshDict.txt file.
Analytical Shear Stress Graph:
Numerical Shear Stress : It is calculated by considering the velocity of this relative motion. The shear rate is defined as a rate of relative motion between their adjacent layer of the moving fluid. The shear rate for fluid flowing between two parallel plates one moving at a constant speed and another plate is stationary is given by
γ=(uy)
where uy is the velocity gradient.
Shear Stress is proportional to shear rate where viscosity is the proportionality coefficient. This is known as Newton\'s Law of Viscosity.
τ=μ⋅(dudy)
This expression is only valid for low range Reynold\'s number such as laminar flow. For the turbulent flows it doesn\'t work, as there are many well defined layers. Below we can see a matlab code for calculating shear stress numerically. For this we need to extract data from openfoam and import it into the matlab to plot the graph.
clear all
close all
clc
D=0.004;
mu=8.9e-4;
f1=fopen(\'velocity.csv\');
readData = textscan(f1,\'%f %f %f %f %f %f %f %f %f\',\'HeaderLines\',1,\'Delimiter\',\',\');
u = readData{1,1} (:,1);
R=linspace(0,(D),1000);
dR= R(2)-R(1);
for k=1:length(R)
du(k)=u(k+1)-u(k);
dU=abs(du);
tau(k)=mu*(dU(k)/dR);
end
figure(1)
plot(R,tau)
xlabel(\'Distance in Y Direction\');
ylabel(\'Shear Stress\')
grid on
legend(\'Shear Stress\')
title(\'Shear Stress (Numerical Solution)\')
Once we run the above we would obtain the below graph:
From the graph we can observe that the shear stress is maximum at the walls and is zero at the center. Also the numerically results matches with the analytical solution.
The link for the extracted velocity.csv file and for all simulation files is given below:
https://drive.google.com/open?id=1glWz73jnsR9ZbHMUd_fLOlmWVOzfPDG1
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
Week 8: Literature review - RANS derivation and analysis
Aim: To apply Reynold's decomposition to the Navier Stoke's equations to obtain the expression for Reynold's stress. Also understanding the terms Reynold's stress and the difference between turbulent and molecular viscosity. Theory: Most of the engineering problems deal with turbulent flows. A characteristic feature of…
28 Jul 2020 11:01 AM IST
Week 7: Shock tube simulation project
Aim: To set up a transient shock tube simulation using Converge. Theory: Shock tubes are devices used for studying the flow of high temperature and high-velocity compressible gas. High-temperature supersonic gas flow is initiated in a shock tube as a result of the rupture of a diaphragm which is separating two gases…
24 Jul 2020 01:50 AM IST
Week 6: Conjugate Heat Transfer Simulation
Aim: To set up a flow simulation through a pipe for visualizing conjugate heat transfer through a solid pipe over the walls. Also, perform a grid dependence test and analyzing the effect of supercycle interval. Theory: Conjugate heat transfer (CHT) is a combination of heat transfer in solids and fluids. In solids,…
20 Jul 2020 04:58 AM IST
Week 5: Prandtl Meyer Shock problem
Aim: To simulate the Prandtl Meyer shock problem and check the effect of SGS temperature value on cell count and shock location using Converge. Also, perform a literature review on flow boundary conditions used for shock flow problems. Theory: We need boundary conditions in order to solve ordinary differential equations…
11 Jun 2020 06:40 PM IST
Related Courses
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.