All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
PROBLEM SETUP DESCRIPTION 1. Steady isentropic flow through a Convergent Divergent Nozzle is Assumed. 2. Source flow into the inlet of the nozzle is at constant temperature and pressure. 3. Isentropic supersonic expansion of the flow occurs as denoted by the Mach Number Values as shown is the above schematic.…
Shouvik Bandopadhyay
updated on 25 Apr 2019
PROBLEM SETUP DESCRIPTION
1. Steady isentropic flow through a Convergent Divergent Nozzle is Assumed.
2. Source flow into the inlet of the nozzle is at constant temperature and pressure.
3. Isentropic supersonic expansion of the flow occurs as denoted by the Mach Number Values
as shown is the above schematic.
4. It is assumed that flow field varies only in the x direction. The said flow is known
as quasi-1D flow.
Non Dimensional Governing Equations for Conservative Form Analysis
1. Continuity Equation:
δ(ρ′.A′)δt′+δ(ρ′.A′.v′)δx′=0δ(ρ'.A')δt'+δ(ρ'.A'.v')δx'=0
where
ρ′=ρρoρ'=ρρo A′=AA∗A'=AA∗ t′=t(La0)t'=t(La0) v′=va0v'=va0 x′=xLx'=xL
ρ0→ρ0→ Density of reservoir L→L→Length of the nozzle
a0→a0→ Sound Speed inside the reservoir A∗→A∗→ Throat Area
ρ→ρ→ Density of working fluid v→v→ Velocity of Working FLuid
A→A→ Area of Nozzle
2. Momentum Equation
δ(ρ′.A′.v′)δt′+δ(ρ′.A′.v′2+(1γ)ρ′.A′)δx′=(1γ).p′.δA′δx′δ(ρ'.A'.v')δt'+δ(ρ'.A'.v'2+(1γ)ρ'.A')δx'=(1γ).p'.δA'δx'
where
p′=pp0p'=pp0 γ→γ→ Specific Heat Ratio`
p0→p0→Pressure of reservoir p→p→ Fluid Pressure
3. Energy Equation
δ(ρ′.(e′γ-1+γ2.v′2).A′)δt′+δ(ρ′.(e′γ-1+γ2.v′2).v′.A′+p′.A′.v′)δx′=0δ(ρ'.(e'γ−1+γ2.v'2).A')δt'+δ(ρ'.(e'γ−1+γ2.v'2).v'.A'+p'.A'.v')δx'=0
where
e′=ee0e'=ee0
e0→e0→ Energy of reservoir
T = temperarure
e\' = T\'
Cv→Cv→ Specific Heat at Constant Volume
Let U be the solutions vector, F be the flux vector and J be the source term, such that: -
U1=ρ′A′U1=ρ'A'
U2=ρ′A′V′U2=ρ'A'V'
U3=ρ′(e′γ-1+γ2V′2)A′U3=ρ'(e'γ−1+γ2V'2)A'
F1=ρ′A′V′F1=ρ'A'V'
`F_2 = rho\' A\' V\'^2 + 1/gamma p\'A\'
F3=ρ′(e′γ-1+γ2V′2)V′A′+p′A′V′F3=ρ'(e'γ−1+γ2V'2)V'A'+p'A'V'
J2=1γp′∂A′∂x′J2=1γp'∂A'∂x'
Substituting the above terms in the governing equations (conservative form) we get:
∂U1∂t′=-∂F1∂x′∂U1∂t'=−∂F1∂x'
∂U2∂t′=J2-∂F2∂x′∂U2∂t'=J2−∂F2∂x'
∂U3∂t′=-∂F3∂x′∂U3∂t'=−∂F3∂x'
The solver built in MATLAB solves for the solution vectors. The following equations are utilized to caliberate the corrosponding parameters.
ρ′=U′A′ρ'=U'A'
V′=U2U1V'=U2U1
T′=e′=(γ-1)(U3U1-γ2V′2)T'=e'=(γ−1)(U3U1−γ2V'2)
p′=ρ′T′p'=ρ'T'
As we\'re solving for the solution vectors, the RHS consisting of flux terms and source terms must also be expressed in terms of U1, U2 and U3 to obtain the pure form of the flux terms. Otherwise, the solution may be rendered unstable after just few time steps.
F1=U2F1=U2
F2=U22U1+γ-1γ(U3-γ2U22U1)F2=U22U1+γ−1γ(U3−γ2U22U1)
F3=γU2U3U1-γ(γ-1)2U32U21F3=γU2U3U1−γ(γ−1)2U32U21
J2=γ-1γ(U3-γ2U22U1)∂(lnA′)∂x′J2=γ−1γ(U3−γ2U22U1)∂(lnA')∂x'
NON DIMENSIONAL GOVERNING EQUATIONS FOR NON-CONSERVATIVE FORM ANALYSIS
NOTE: Symbols have usual meanings as before.
1. Continuity Equation
δρ′δt′=-ρ′.δv′δx′-ρ′.v′δ(lnA′)δx′-v′.δρ′δx′δρ'δt'=−ρ'.δv'δx'−ρ'.v'δ(lnA')δx'−v'.δρ'δx'
2. Momentum Equation
δv′δt′=-v′.δv′δx′-(1γ)[δT′δx′+(T′ρ′).δp′δx′]δv'δt'=−v'.δv'δx'−(1γ)[δT'δx'+(T'ρ').δp'δx']
3. Energy Equation
δT′δt′=-v′.δT′δx′-(γ-1).T′[δv′δx′+v′.δ(ln(A′))δx′]δT'δt'=−v'.δT'δx'−(γ−1).T'[δv'δx'+v'.δ(ln(A'))δx']
DISCRETIZATION OF THE NON-CONSERVATIVE FORM OF GOVERNING EQUATION
MacCormack\'s Predictor Corrector Method is used to discretize the governing equations.
Predictor Step
Computing time derivatives using forward difference scheme for space derivatives by substituting known values of flow variables at time t.
(∂ρ∂t)ti=-ρti[Vti+1-VtiΔx]-ρtiVti[ln(Ai+1)-ln(Ai)Δx]-Vti[ρti+1-ρtiΔx](∂ρ∂t)ti=−ρti[Vti+1−VtiΔx]−ρtiVti[ln(Ai+1)−ln(Ai)Δx]−Vti[ρti+1−ρtiΔx]
(∂V∂t)ti=-Vti[Vti+1-VtiΔx]-1γ[Tti+1-TtiΔx+Ttiρti(ρti+1-ρtiΔx)](∂V∂t)ti=−Vti[Vti+1−VtiΔx]−1γ[Tti+1−TtiΔx+Ttiρti(ρti+1−ρtiΔx)]
(∂T∂x)ti=-Vti[Tti+1-TtiΔx]-(γ-1)Tti[Vti+1-VtiΔx+Vti(ln(Ai+1)-ln(Ai)Δx)](∂T∂x)ti=−Vti[Tti+1−TtiΔx]−(γ−1)Tti[Vti+1−VtiΔx+Vti(ln(Ai+1)−ln(Ai)Δx)]
Computing the predicted values of flow field variables at time (t+dt) using the time derivatives at time t.
(ˉρ)t+Δti=ρti+(∂ρ∂t)tiΔt(¯ρ)t+Δti=ρti+(∂ρ∂t)tiΔt
(ˉV)t+Δti=Vti+(∂V∂t)tiΔt(¯¯¯V)t+Δti=Vti+(∂V∂t)tiΔt
(ˉT)t+Δti=Tti+(∂T∂t)tiΔt(¯¯¯T)t+Δti=Tti+(∂T∂t)tiΔt
where dt is the time step size satisfying the CFL condition (with C = 0.5)
Δt=C(Δx√T+V)Δt=C(Δx√T+V)
The time step size is calculated for all nodes and the minimum of all time step size values is takes as the value for \'dt\'.
Corrector Step
Computing time derivative values at time (t+dt) with the predicted values of flow variables.
(¯∂ρ∂t)t+Δti=-(ˉρ)t+Δti[(ˉV)t+Δti-(ˉV)t+Δti-1Δx]-(ˉρ)t+Δti(ˉV)t+Δti[ln(Ai)-ln(Ai-1)Δx]-(ˉV)t+Δti[(ˉρ)t+Δti-(ˉρ)t+Δti-1Δx](¯¯¯¯¯¯¯∂ρ∂t)t+Δti=−(¯ρ)t+Δti⎡⎢⎣(¯¯¯V)t+Δti−(¯¯¯V)t+Δti−1Δx⎤⎥⎦−(¯ρ)t+Δti(¯¯¯V)t+Δti[ln(Ai)−ln(Ai−1)Δx]−(¯¯¯V)t+Δti[(¯ρ)t+Δti−(¯ρ)t+Δti−1Δx]
(¯∂V∂t)t+Δti=-(ˉV)t+Δti[(ˉV)t+Δti-(ˉV)t+Δti-1Δx]-1γ[(ˉT)t+Δti-(ˉT)t+Δti-1Δx+(ˉT)t+Δti(ˉρ)t+Δti((ˉρ)t+Δti-(ˉρ)t+Δti-1Δx)](¯¯¯¯¯¯¯¯∂V∂t)t+Δti=−(¯¯¯V)t+Δti⎡⎢⎣(¯¯¯V)t+Δti−(¯¯¯V)t+Δti−1Δx⎤⎥⎦−1γ⎡⎢⎣(¯¯¯T)t+Δti−(¯¯¯T)t+Δti−1Δx+(¯¯¯T)t+Δti(¯ρ)t+Δti((¯ρ)t+Δti−(¯ρ)t+Δti−1Δx)⎤⎥⎦
(¯∂T∂x)t+Δti=-(ˉV)t+Δti[(ˉT)t+Δti-(ˉT)t+Δti-1Δx]-(γ-1)Tt+Δti[(ˉV)t+Δti-(ˉV)t+Δti-1Δx+(ˉV)t+Δti(ln(Ai)-ln(Ai-1)Δx)](¯¯¯¯¯¯¯¯∂T∂x)t+Δti=−(¯¯¯V)t+Δti⎡⎢⎣(¯¯¯T)t+Δti−(¯¯¯T)t+Δti−1Δx⎤⎥⎦−(γ−1)Tt+Δti⎡⎢⎣(¯¯¯V)t+Δti−(¯¯¯V)t+Δti−1Δx+(¯¯¯V)t+Δti(ln(Ai)−ln(Ai−1)Δx)⎤⎥⎦
Calculating the average of time derivative values obtained from foward difference and backward difference.
(∂ρ∂t)av=12[(∂ρ∂t)ti+(¯∂ρ∂t)t+Δti](∂ρ∂t)av=12⎡⎣(∂ρ∂t)ti+(¯¯¯¯¯¯¯∂ρ∂t)t+Δti⎤⎦
(∂V∂t)av=12[(∂V∂t)ti+(¯∂V∂t)t+Δti](∂V∂t)av=12[(∂V∂t)ti+(¯¯¯¯¯¯¯¯∂V∂t)t+Δti]
(∂T∂t)av=12[(∂T∂t)ti+(¯∂T∂t)t+Δti](∂T∂t)av=12[(∂T∂t)ti+(¯¯¯¯¯¯¯¯∂T∂t)t+Δti]
Compute the corrected values of flow field variables using the average value of time derivatives.
ρt+Δti=ρti+(∂ρ∂t)avΔtρt+Δti=ρti+(∂ρ∂t)avΔt
Vt+Δti=Vti+(∂V∂t)avΔtVt+Δti=Vti+(∂V∂t)avΔt
Tt+Δti=Tti+(∂T∂t)avΔtTt+Δti=Tti+(∂T∂t)avΔt
pt+Δti=ρt+Δti.Tt+Δtipt+Δti=ρt+Δti.Tt+Δti
DISCRETIZATION OF THE CONSERVATIVE FORM OF GOVERNING EQUATION
MacCormack\'s Predictor Corrector Method has been used for discretization.
Predictor Step
The flux terms and the source terms are calculated at nodes i and i+1 using previous state values of U1, U2 and U3 and forward difference is applied to compute the value of the time derivatives.
(∂U1∂t′)ti=-Ft1(i+1)-Ft1(i)Δx′(∂U1∂t')ti=−Ft1(i+1)−Ft1(i)Δx'
(∂U2∂t′)ti=Jt2(i+1)-Jt2(i)Δx′-Ft2(i+1)-Ft2(i)Δx′(∂U2∂t')ti=Jt2(i+1)−Jt2(i)Δx'−Ft2(i+1)−Ft2(i)Δx'
(∂U3∂t′)ti=-Ft3(i+1)-Ft3(i)Δx′(∂U3∂t')ti=−Ft3(i+1)−Ft3(i)Δx'
These time derivative values are used to calculate the predicted values of U1, U2 and U3.
ˉUt+Δt1(i)=(∂U1∂t′)ti.Δt′¯¯¯Ut+Δt1(i)=(∂U1∂t')ti.Δt'
ˉUt+Δt2(i)=(∂U2∂t′)ti.Δt′¯¯¯Ut+Δt2(i)=(∂U2∂t')ti.Δt'
ˉUt+Δt3(i)=(∂U3∂t′)ti.Δt′¯¯¯Ut+Δt3(i)=(∂U3∂t')ti.Δt'
Corrector Step
New set of flux and source term values are calculated using the predicted values of U1, U2 and U3 and backward difference is applied to compute the time derivative values for the corrector step.
(¯∂U1∂t′)t+Δti=-ˉFt+Δt1(i)-ˉFt+Δt1(i-1)Δx′(¯¯¯¯¯¯¯∂U1∂t')t+Δti=−¯¯¯Ft+Δt1(i)−¯¯¯Ft+Δt1(i−1)Δx'
(¯∂U2∂t′)t+Δti=ˉJt+Δt2(i)-ˉJt+Δt2(i-1)Δx′-ˉFt+Δt2(i)-ˉFt+Δt2(i-1)Δx′(¯¯¯¯¯¯¯∂U2∂t')t+Δti=¯¯¯Jt+Δt2(i)−¯¯¯Jt+Δt2(i−1)Δx'−¯¯¯Ft+Δt2(i)−¯¯¯Ft+Δt2(i−1)Δx'
(¯∂U3∂t′)t+Δti=-ˉFt+Δt3(i)-ˉFt+Δt3(i-1)Δx′(¯¯¯¯¯¯¯∂U3∂t')t+Δti=−¯¯¯Ft+Δt3(i)−¯¯¯Ft+Δt3(i−1)Δx'
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
FULL SCALE COMBUSTION MODELLING OF A PORT FUEL INJECTION ENGINE
…
22 Jul 2020 08:09 AM IST
Week 7: Shock tube simulation project
…
24 May 2020 08:21 PM IST
Week 8: Literature review - RANS derivation and analysis
RANS LITERATURE REVIEW: DERIVATION OF RANS EQUATONS FOR TURBULENT FLUID FLOWS OBJECTIVE To apply Reynolds Decomposition to NS Equations and obtain the expression for Reynold's Stress …
21 May 2020 05:36 PM IST
Week 5 - Compact Notation Derivation for a simple Mechanism
Please Find the solution of the challenge attached.
20 May 2020 07:20 PM IST
Related Courses
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.