All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
Explicit and Implicit Analysis - LS DYNA Week-2 Objective: To use the equation F(u) =…
RANA PRATAP REDDY PIDAPARTHI
updated on 03 Oct 2021
Explicit and Implicit Analysis - LS DYNA Week-2
Objective: To use the equation F(u) = u3+9u2+4u, and solve using both Explicit and Implicit Methods ( have a tolerence of 0.001).
Theory:
Explicit Time Integration | Implicit Time Integration |
It Assumes constant accelaration over the time step. | It assumes that the accelaration varies lineraly over the time step. |
The changes in the geometry depends only on the known quantities in previous time steps. xn+1=f(xn) |
The changes in geometry depends on quantities related to the unknown geometry itself. f(xn+1,xn)=0 |
Internal and external forces are summed at each node point, and a nodal accelartion is computed by dividing by mass. This solution is advanced by integrating accelaration in time. | Global stiffness matrix is computed, inverted and applied to nodal out-of-balance force to obtain a displacement increment. |
Implicit Time Integration:
Advantages:
Disadvantages:
Explicit Time Integration:
Advantages:
Disadvantages:
Applications:
Implicit:
Explicit:
1. Explicit scheme:
F(u)=u3+9u2+4u
k(u)=dFdu=3u2+18u+4
ΔF=k.Δu This relation is used to find the incremental displacement.
Step1:
u0=0.0,⇒k(u0)=4,ΔF=1,Δu1=ΔFk(u0)=0.25,u1=u0+Δu1=0.25
Fexternal=ΔF=1
FInternal=u3+9u2+4u=1.5781(∵u=u1)
Step2:
u1=0.25,⇒k(u1)=8.688,ΔF=1
Δu2=ΔFk.(u1)=0.1151.
u2=u1+Δu2=0.3651.
Fexternal=ΔF+ΔF=2
FInternal=u3+9u2+4u=2.708(∵u=u2)
Step3:
u2=0.3651,⇒k(u2)=10.9717,ΔF=1,Δu3=ΔFk(u2)=0.0911,u3=u2+Δu3=0.4562
Fexternal=ΔF+ΔF+ΔF=3
FInternal=u3+9u2+4u=3.7928(∵u=u3)
Table:
Step i | ΔFi | Δui | ui | (FExternal)i | (FInternal)i | R=FInternali-FExternali |
1 | 1 | 0.25 | 0.25 | 1 | 1.5781 | 1.5781 |
2 | 1 | 0.1151 | 0.3651 | 2 | 2.708 | 0.708 |
3 | 1 | 0.0911 | 0.4562 | 3 | 3.7928 | 0.7928 |
2. Implicit scheme:
Rj+1=Rj(uj)+dR(uj)duδuj+1+...=Rj+k(uj)δuj+1+...
δuj+1=−[k(uj)]−1⋅Rj
Step1:
`u_0=0.0,⇒k(u_0)=4,ΔF=1,u1=ΔFk(u0)=0.25,u1=u0+Δu1=0.25
Fexternal=ΔF=1
FInternal=u31+9u21+4u1=1.578
R(0)=FInternal−Fexternal=0.578
R(0)>10−2⇒Newton-Raphson iterations are necessary.
δu(1)=−[k(u(0)1)]−1⋅R(0)=−(8.6875)−1⋅0.578=−0.0665
Fexternal=ΔF=1
FInternal=(u(1)1)3+9(u(1)1)2+4u(1)1=1.0432
R(1)=FInternal−Fexternal=0.0432
R(1)>10−2⇒Newton-Raphson iterations are necessary
δu(2)=δu(1)−[k(u(1)1)]−1⋅R(1)=−0.0665−(7.404)−1⋅0.0432=−0.0723
Fexternal=ΔF=1
FInternal=(u(2)1)3+9(u(2)1)2+4u(2)1=1.0006
R(2)=FInternal−Fexternal=0.0006
R(2)<10−2⇒Newton-Raphson iterations are not necessary
Step2:
u1=0.1777,⇒k(u1)=7.2933,ΔF=1,Δu2=ΔFk(u1)=0.1371,u2=u1+Δu2=0.3148
Fexternal=ΔF+ΔF=2
FInternal=u32+9u22+4u2=2.1822
R(0)=FInternal−Fexternal=0.1822
R(0)>10−2⇒Newton-Raphson iterations are necessary.
δu(1)=−[k(u(0)2)]−1⋅R(0)=−(9.9637)−1⋅0.1822=−0.0182
⇒The updated value of u(1)2=u(0)2+δu(1)=0.3148−0.0182=0.2966
Fexternal=ΔF+ΔF=2
FInternal=(u(1)2)3+9(u(1)2)2+4u(1)2=2.0042
R(1)=FInternal−Fexternal=0.0042
R(1)<10−2⇒Newton-Raphson iterations are not necessary
Step3:
u2=0.2966,⇒k(u2)=9.6027,ΔF=1,Δu3=ΔFk(u2)=0.1041,u3=u2+Δu3=0.4007
Fexternal=ΔF+ΔF+ΔF=3
FInternal=u33+9u23+4u3=3.1121
R(0)=FInternal−Fexternal=0.1121
R(0)>10−2⇒Newton-Raphson iterations are necessary.
δu(2)=−[k(u(0)3)]−1⋅R(0)=−(11.6942)−1⋅0.1121=−0.00958
⇒The updated value of u(1)3=u(0)3+δu(2)=0.4007−0.00958=0.3911
Fexternal=ΔF+ΔF+ΔF=3
FInternal=(u(1)3)3+9(u(1)3)2+4u(1)3=3.0008
R(1)=FInternal−Fexternal=0.0008
R(1)<10−2⇒Newton-Raphson iterations are not necessary
Table:
Step i | ΔFi | ui | (FExternal)i | (FInternal)i | R=(FInternal)i-(FExternal)i |
1 | 1 | 0.1777 | 1 | 1.0006 | 0.0006 |
2 | 1 | 0.2966 | 2 | 2.0042 | 0.0042 |
3 | 1 | 0.3911 | 3 | 3.0008 | 0.0008 |
Graph:
Conclusion:
Ths the given equation is solved in both implicit and Explicit methods. From the above observations we can say that implicit method wil give better results in non linear static problems when time and computational cost are considered.
Reference: https://people.wallawalla.edu/~louie.yaw/nonlinear/ExIm_analysis.pdf
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
Week - 5 - Modelling Spotwelds
MODELLING SPOTWELDS USING 1D BEAM AND 3D HEXA SOLID ELEMENTS WEEK - 5, LS-DYNA …
17 Nov 2021 10:01 AM IST
Week - 4 - Crash Box Simulation
CRASH BOX SIMULATION USING LS-DYNA…
30 Oct 2021 09:49 AM IST
Week - 3 Drop test Challenge
DROP TEST SIMULATION USING LS-DYNA …
11 Oct 2021 10:53 AM IST
Week - 2 - Explicit and Implicit Analysis
Explicit and Implicit Analysis - LS DYNA Week-2 Objective: To use the equation F(u) =…
03 Oct 2021 02:32 PM IST
Related Courses
0 Hours of Content
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.