All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
Aim :- To Calculate the Net Work Output & Back Work Ratio for Rankine Cycle Simulator. Theory:- The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical…
Sachin Barse
updated on 01 Jun 2022
Aim :- To Calculate the Net Work Output & Back Work Ratio for Rankine Cycle Simulator.
Theory:- The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat source and heat sink.
There are four processes of Rankine Cycle :-
Equation of Rankine Cycle:-
Matlab Program for Equation Solve:-
% Calculation Rankine Cycle Simulator
% The Program to find out the net work output and back work ratio
clear all
close all
clc
% Rankine cycle process
disp('1-2 isentropic expansion in turbine')
disp('2-3 constant pressure heat rejection by condenser')
disp('3-4 isentropic compression in the pump')
disp('4-1 constant pressure heat addition by boiler')
% Inputs
t_1 = input('enter the temperature at turbine inlet(degree celcius):');
p_1 = input('enter the pressure at the turbine inlet(bar):');
p_2 = input('enter the pressure at the turbine outlet(bar):');
% Data given
%turbine inlet temperature = 400 degree celcius
%turbine inlet pressure = 30 bar
%turbine outlet pressure = 0.05 bar = condenser inlet pressure
% at state point 1:
p1 = p_1;
t1 = t_1;
s1 = XSteam('s_pT',p1,t1);
h1 = XSteam('h_pT',p1,t1);
ts1 = XSteam('Tsat_p',p1);
sf1 = XSteam('sL_p',p1);
sg1 = XSteam('sV_p',p1);
hf1 = XSteam('hL_p',p1);
hg1 = XSteam('hV_p',p1);
% at state point 2:
s2 = s1;
p2 = p_2;
t2 = XSteam('Tsat_p',p2);
ts2 = XSteam('Tsat_p',p2);
sf2 = XSteam('sL_p',p2);
sg2 = XSteam('sV_p',p2);
hf2 = XSteam('hL_p',p2);
hg2 = XSteam('hV_p',p2);
x2 = ((s2-sf2)/(sg2-sf2));
h2 = hf2 + (x2*(hg2-hf2));
% at state point 3:
p3 =p2;
t3 = t2;
s3 = XSteam('sL_p',p3);
v3 = XSteam('vL_p',p3);
hf3 = Xsteam('hV_p',p3);
hg3 = XSteam('hL_p',p3);
sf3 = XSteam('sV_p',p3);
sg3 = XSteam('sL_p'p3);
x3 = ((s3-sf3)/(sg3-sf3));
h3 = hf3 + (x3*(hg3-hf3));
cp4 = XSteam('cpL_p',p3);
cv4 = XSteam('cvL_p',p3);
gamma = (cp4/cv4);
g = (gamma-1)/gamma;
% at state point 4:
p4 = p1;
s4 = s3;
h4 = XSteam('h_ps',p4,s4);
t4 =t3*((p4/p3)^g);
wt = h1 - h2;
wp = h4 + h3
wnet = wt - wp;
Qin = h1 - h2;
Qout = h2 - h3;
Ntherm = (wnet/Qin)*100;
S.S.C = 3600/wt
temp = linspace(1,400,500);
for i = 1:length(temp)
a(i) = XSteam('hL_T',temp(i));
b(i) = XSteam('hV_T',temp(i));
c(i) = XSteam('sL_T',temp(i));
d(i) = XSteam('sV_T',temp(i));
end
%plot 1:
figure(1)
hold on
plot([s1 s2],[t1 t2],'Color','r','linewidth',2)
text(s1,t1,'1')
text(s2,t2,'2')
plot([s2 s3],[t2 t3],'Color','c','LineWidth',2)
text(s3,t3,'3')
plot([s3 s4],[t3 t4],'Color','b','linewidth',2)
text(s4,t4,'4')
plot([s4 sf1],[t4 ts1],'Color','m','linewidth',2)
text(sf1,ts1,'4s')
plot([sf1 sg1],[ts1 ts1],'Color','k','linewidth',2)
plot(c,temp,'Color','b','linestyle','-','LineWidth',1.5)
plot(d,temp,'Color','b','linestyle','-','LineWidth',1.5)
title('T-S Diagram')
xlabel('Entropy(KJ*KgK)')
ylabel('Temperature(K)')
legend('1-2 isentropic expansion','2-3 constant pressure','3-4 isentropic compression','constant pressure')
%plot 2:
figure(2)
hold on
plot([s1 s2],[h1 h2],'Color','k','LineWidth',2)
text(s1,h1,'1')
plot([s2 s3],[h2 h3],'Color','g','LineWidth',2)
text(s2,h2,'2')
plot([s3 s4],[h3 h4],'Color','m','LineWidth',2)
text(s3,h3,'3')
plot([s4 s1],[h4 h1],'Color','r','LineWidth',2)
text(s4,h4,'4')
plot(c,a,'Color','b','linestyle','-','LineWidth',1.5)
plot(d,b,'Color','b','linestyle','-','LineWidth',1.5)
title('H-S Diagram')
xlabel('Entropy(KJ/KgK)')
ylabel('Enthalpy(KJ/KgK)')
legend('1-2 isentropic expansion','2-3 constant pressure','3-4 isentropic compression','constant pressure')
%Display
disp('At state point 1:')
fprintf('p1 is : %f Bar/n',p1)
fprintf('t1 is %f deg celcius/n',t1)
fprintf('h1 is: %f KJ/Kg/n',h1)
fprintf('s1 is: %f KJ/KgK]n',s1)
disp('At state point 2:')
fprintf('p1 is : %f Bar/n',p1)
fprintf('t1 is %f deg celcius/n',t2)
fprintf('h2 is: %f KJ/Kg/n',h2)
fprintf('s2 is: %f KJ/KgK]n',s2)
fprintf('x2 is: %f',x2)
disp('At state point 3:')
fprintf('p3 is : %f Bar/n',p3)
fprintf('t3 is %f deg celcius/n',t3)
fprintf('h3 is: %f KJ/Kg/n',h3)
fprintf('s3 is: %f KJ/KgK]n',s3)
disp('At state point 4:')
fprintf('p4 is : %f Bar/n',p4)
fprintf('t4 is %f deg celcius/n',t4)
fprintf('h4 is: %f KJ/Kg/n',h4)
fprintf('s4 is: %f KJ/KgK]n',s4)
fprintf('wt is: %f KJ/Kg/n',wt)
fprintf('wp is: %f KJ/Kg/n',wp)
fprintf('wnet is:%f KJ/kg/n',wnet)
fprintf('Ntherm is: %f Percent/n',Ntherm)
fprintf('s.s.c is: %f Kg/kwh/n',s.s.c)
T-S Diagram & H-S Diagram Graph:-
Results & Conclusion:-
1.Net Work = 608.093 KJ/KG
2.Thermal Efficiency = 20.55%
3.Back Work Ratio = 0.4%
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
FINAL INDEPENDENT PROJECT
Project : Design & Animate the drone camera for project model. Attached Link For Model Review : https://drive.google.com/file/d/1f6sjaJc6Od2AEnmh-JYFFoLMmUveWk61/view?usp=drive_link
15 May 2024 05:42 PM IST
Week - 4
AIM: Implement control logic of a “washing machine” using Stateflow as per given sequence: If the power supply is available, the system gets activated. If the Water supply is not available, stop the process & indicate through LED Soaking time should be 200s followed by Washing…
13 Mar 2024 10:27 AM IST
Week -2
1.Door Bell Simulink Model: Simulink Model Explanation: The pulse generator is used to create square wave pulses at regular intervals.The block waveform parameters Amplitude,pulse width,period and phase delay,determine the shape of the output waveform. …
12 Mar 2024 12:23 PM IST
Project 1
Attached Model for Project :- Attached link for grading :- https://drive.google.com/file/d/13bjiEKi2h1sYtm9LzZMouMksFAZYnVIQ/view?usp=drive_link
29 Oct 2023 11:00 AM IST
Related Courses
0 Hours of Content
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.