Menu

All Courses

All Courses

Mechanical

Uploaded on

10 Nov 2022

Skill-Lync

Motion ratio/installation ratio is a geometric measure that relates the wheel centre displacement and spring rate, it decides the amount by which the spring compresses for the applied load at the wheel centre when the vehicle undergoes a bump. Our aim is to keep the motion ratio as close as ‘1’, if it is then the wheel rate will be equal to the spring rate. This motion ratio is a parameter which decides how efficiently the suspension system performs under loading conditions.

The installation ratio in simple terms is the inverse of the motion ratio.

Motion ratio can be estimated by the means of your spring rate and wheel rate. Additionally, you can estimate your motion ratio with the help of the mounting points of your suspension system. Let’s dive a little further into these methods individually. These methods are usually used for estimating motion ratio in static conditions. During dynamic conditions, the motion ratio of the suspension is subject to change based on various parameters such as suspension geometry, spring parameters, wheel parameters, mounting points etc.

This approach involves the use of spring stiffness/rate and wheel rate parameters. This is pretty much straightforward and can be used if you are sure of your frequency targets to be achieved. Or if you know the spring parameters which are to be used in your vehicle. The mathematical expression is as follows:

Here, the wheel rate is the force required to move the wheel centre by unit displacement, and the spring rate is the spring stiffness value of the spring element you have chosen.

This method fails, if you are not able to choose a spring rate value and you have not given a proper frequency target. This can be seen when you are in a team which develops an entirely new vehicle lineup, instead of existing products. In that case, the second method helps you by taking the suspension geometry into consideration to calculate the motion ratio.

This method as mentioned before uses the mounting points of the spring. Let’s look into this in a detailed manner.

The majority of the independent suspension has a geometry comprising a lower link on which the spring is mounted and the other end of the spring is attached to the chassis. Let us consider a simple A-arm suspension as an example.

Here, D1 is the horizontal length between the lower spring mounting and the lower arm mounting point on the chassis.

D2 is the horizontal distance between your wheel center point and the lower arm mounting point on the chassis

A is the angle made by the spring in the horizontal axis.

Using these values, the motion ratio can be estimated as

`MR=((D1)/(D2))^2*cos(90-A)`

Where, **cos(90-A)** is called the angle correction factor.

For estimating the motion ratio of a beam axle suspension it is a bit different because those are dependent types and so the spring mounting angles do not play a major role in estimating the motion ratio.

Here d3 spring mounting center distance and d4 is the track width with respect to the wheel centers. The motion ratio is calculated as.

`MR=(d3)/(d4)`

And that’s how the motion ratio parameters calculation approach is chosen. Both the above methods go hand in hand, to help us in standardizing the motion ratio of the suspension.

Author

Navin Baskar

Author

Skill-Lync

Continue Reading

**Related Blogs**

Shock tube simulation

Learn how to render a shock-tube-simulation and how to work on similar projects after enrolling into anyone of Skill-Lync's CAE courses.

Mechanical

10 May 2020

What is Finite element analysis (FEA)?

What exactly is Finite element analysis? How would one explain the basic concept to an undergrad friend? Learn how FEA courses at Skill-Lync can help you get employed.

Mechanical

08 May 2020

Design of Frontal BIW enclosure of a car (Bonnet)

In this blog, read how to design the frontal BIW enclosure of a car (Bonnet) and learn how Skill-Lync Master's Program in Automotive Design using CATIA V5 will help you get employed as a design engineer.

Mechanical

10 May 2020

What is Strain Hardening and Plasticity?

This effect shown in the kinematic hardening is known as the Bauschinger effect. For large strain problems, kinematic hardening model is not a good choice because of the Bauschinger effect.

Mechanical

27 Jun 2022

What is Hourglass Effect? Working & Fixes

When the elements in a model deform but the strain energy is not computed for that deformation, it results in an Hourglass deformation effect or Hourglass effect. Usually, this can be clearly seen in the post-processing stage where the elements will have a zig-zag formation.

Mechanical

28 Jun 2022

Author

Skill-Lync

Continue Reading

**Related Blogs**

Shock tube simulation

Learn how to render a shock-tube-simulation and how to work on similar projects after enrolling into anyone of Skill-Lync's CAE courses.

Mechanical

10 May 2020

What is Finite element analysis (FEA)?

What exactly is Finite element analysis? How would one explain the basic concept to an undergrad friend? Learn how FEA courses at Skill-Lync can help you get employed.

Mechanical

08 May 2020

Design of Frontal BIW enclosure of a car (Bonnet)

In this blog, read how to design the frontal BIW enclosure of a car (Bonnet) and learn how Skill-Lync Master's Program in Automotive Design using CATIA V5 will help you get employed as a design engineer.

Mechanical

10 May 2020

What is Strain Hardening and Plasticity?

This effect shown in the kinematic hardening is known as the Bauschinger effect. For large strain problems, kinematic hardening model is not a good choice because of the Bauschinger effect.

Mechanical

27 Jun 2022

What is Hourglass Effect? Working & Fixes

When the elements in a model deform but the strain energy is not computed for that deformation, it results in an Hourglass deformation effect or Hourglass effect. Usually, this can be clearly seen in the post-processing stage where the elements will have a zig-zag formation.

Mechanical

28 Jun 2022

Book a Free Demo, now!

Related Courses

4.9

426 Hours of content

Electrical Domain

Recently launched

0 Hours of content

Design Domain

5

0 Hours of content

Design Domain

Showing 1 of 6 courses

Try our top engineering courses, projects & workshops today!Book a Live Demo