Menu

Executive Programs

Workshops

Projects

Blogs

Careers

Student Reviews



More

Academic Training

Informative Articles

Find Jobs

We are Hiring!


All Courses

Choose a category

Loading...

All Courses

All Courses

logo

Analysis and Design of High Rise Buildings using ETABS and Foundation Design using SAFE for Seismic Loads in Bangalore

Learn about how high-rise buildings and their foundations are analysed, designed, and simulated under seismic loading conditions using ETABS and SAFE. This is a fundamental course in the civil design domain.

Book a Class, for FREE

RELATED RECENT PLACEMENTS

Jayesh Suryawanshi

Volkswagen (I) Pvt. Ltd.,

RMD Sinhgad

Mithin SanthaKumar

Timetooth Technology

Cochin University of Science and Technology University in Kochi, Kerala

Manthan Waghaye

Altigreen Propulsion Labs Pvt Ltd

Shri Sant Gajanan Maharaj College Of Engineering

Hemant Sagar

KN Associates

PM polytechnic, Delhi ncr , sonipat

Jangaiah Chikonda

LTTS

ANURAG GROUP OF INSTITUTIONS

sai dinesh

LTTS

usharama college of engineering and technology

Vadapalli A S Krishna Maruthi Srinivas

advance technologies

Jawaharlal Nehru Technological University, Kakinada

Manas Metar

Sphinix World Biz Limited

University of Wolverhampton

Syllabus

This course is full of best-in-class content by leading faculty and industry experts in the form of videos and projects

Course Overview

  • This course provides an overview of
    • Seismic Design Concepts
    • Dynamic Analysis of Building Structures & Estimation of Earthquake Forces
    • Conceptual Design of Buildings for Earthquake Resistance with Reference to IS 1893
    • Detailed Design of RCC Member Elements with Reference to IS 13920
  • Foundation design software like ETABS and SAFE will be taught and students will learn to build software models of the structure, analyze the results, and use the output to prepare final construction drawings.
  • After the successful completion of this course, students will be able to design, assess new and existing building structures, especially in earthquake-prone zones.

Course Syllabus in Bangalore

On a daily basis we talk to companies in the likes of Tata Elxsi and Mahindra to fine tune our curriculum.

Week 1 - Overview of Seismic Design

Earthquakes generate a seismic load that can be destructive to structures. Seismic design is essential in ensuring that buildings remain functional even after earthquakes. It is important for learners to understand the effects of earthquakes on structures, and the design considerations that go into the development of a high-rise building.

This week will cover 

  • Seismic design philosophy and limit states 
  • Earthquake and their geotechnical and structural effects 
  • Capacity design philosophy

Week 2 - Fundamentals of Structural Dynamics and its Applications in Earthquake Engineering – Part 1

Earthquakes are considered dynamic loads as their force varies overtime. Structural dynamics focuses on the response of structures that experience these dynamic loads. When designing high-rise buildings, structural dynamics and earthquake engineering assess how a structure responds under seismic loads. In order to design high-rise buildings to be earthquake resistant, it is important for learners to understand concepts related to structural dynamics and earthquake engineering.

This week will cover 

  • Force displacement system
  • Damping Force
  • Equation of motion – external force 
  • Equation of motion – earthquake excitation
  • Undamped free vibration systems
  • Viscously damped free damping
  • Earthquake response of linear systems
  • Response spectrum concept 
  • Deformation, pseudo-velocity and pseudo-acceleration response spectra
  • Peak structural response from the response spectrum

Week 3 - Fundamentals of Structural Dynamics and its Applications in Earthquake Engineering – Part 2

Civil engineers consider the forces buildings are subjected to during an earthquake in order to reduce associated damage. The system of forces can be represented as a continuous system with partial differential equations. It is important to understand the mathematical models behind the forces acting on buildings during an earthquake to predict their behavior, and effectively design them to withstand these forces.

This week will cover

  • Multi degree of freedom systems
  • Discretization of structural systems
  • Elastic, damping & inertia forces
  • Damping force
  • Equation of motion 
  • Free vibration – Systems without damping
  • Modal response spectrum analysis
  • Equivalent lateral force method

Week 4 - Conceptual Design of Concrete Buildings for Earthquake Resistance - Part 1

Buildings are commonly made with concrete because of its ability to absorb strong impacts and withstand large forces. Concrete buildings specifically undergo a seismic design process that makes them resilient to earthquakes. It is important for learners to understand the theory behind the design of concrete buildings in terms of earthquake resistance. 

This week will cover

  • General principles of conceptual seismic design 
  • Regularity and irregularity of building structures

Week 5 - Conceptual Design of Concrete Buildings for Earthquake Resistance - Part 2

The tensile strength of buildings can be improved by using reinforced concrete (RC) that has metal bars or wires integrated within. This increases the structure’s stiffness, ductility, and strength to make it earthquake resistant. RC frame systems have columns and beams connected together to make the skeleton of a building. These systems are used for their global ductility and deformation capacity that improves their resistance to earthquakes. It is important for learners to understand the RC systems and their properties in the design of earthquake resistant structures.  

This week will cover

  • Essentials of structural system for seismic resistance - RC frame systems, wall systems, and dual systems 
  • The Capacity Design philosophy
  • The role of a stiff and strong vertical spine in the building
  • Ductility as an alternative to strength

Week 6 - Detailed Design of Concrete Buildings - Part 1

IS 13920 elaborates on the ductile detailing of RC structures that experience seismic forces. This code focuses on ensuring that buildings are designed to withstand large shocks from earthquakes without collapsing. It is important for learners to understand how RC beams are designed in accordance with IS 13920. 

This week will cover

  • Design of beams with reference to IS 13920

Week 7 - Detailed Design of Concrete Buildings - Part 2

IS 13920 is also applied to the design of RC columns. It is important for learners to understand how both RC columns and beams are designed in accordance with IS 13920. 

This week will cover

  • Design of columns and beam - column joints with reference to IS 13920

Week 8 - Detailed Design of Concrete Buildings - Part 3

IS 13920 is also applied to the design of shear walls. It is important for learners to understand how shear walls are designed in accordance with IS 13920. 

This week will cover 

  • Design of shear walls with reference to IS 13920

Week 9 - ETABS Modeling

ETABS is a software tool used to design, analyze, and model  whole structures, specifically multistory structures, and their individual parts. By using ETABS, engineers can understand how different buildings respond to varying loads. It is important for learners to understand how to use ETABS in the modeling and analysis of structures. 

This week will cover

  • Architectural drawings - a cost efficient load path carved out using ETABS 2016. 
  • From identifying loads, to creating an ETABS model
  • Complete analysis and design of RCC building in zone 5 will be demonstrated

Week 10 - Foundation Design - Part 1

The foundation of all buildings is essential in supporting and stabilizing the superstructure by transferring its load to the earth. As high-rise buildings are large structures, their foundation is designed to support heavy loads. Pile foundations are commonly used in high-rise buildings as they offer a deep foundation that strongly anchors the structure. It is important for learners how the foundations of high-rise buildings are designed to maximize the safety of the structure. 

This week will cover

  • Foundation structures for frames and structural walls
  • Footing & pile design using Excel spreadsheet

Week 11 - Foundation Design - Part 2

Liquefaction happens when the stiffness and strength of soil decreases by sudden loading or intense shaking. This is common in the case of earthquakes. When liquefaction happens, the foundation may sink into the ground and collapse. Raft foundations are resistant to liquefaction, and can be designed by SAFE software. This tool is used in the drawing and design of concrete foundations and floors. It is important for learners to understand what liquefaction is, and how foundations are designed to resist this phenomenon. 

This week will cover

  • Check for liquefaction
  • Design of raft foundation using SAFE

Our courses have been designed by industry experts to help students achieve their dream careers

Industry Projects in Bangalore

Our projects are designed by experts in the industry to reflect industry standards. By working through our projects, Learners will gain a practical understanding of what they will take on at a larger-scale in the industry. In total, there are 2 Projects that are available in this program.

Comparative Study of Different Storey Buildings for Various Seismic Parameters using ETABS Software

Learners are required to analyze structural systems using ETABS software and extract the output. They are also required to study the effect of seismic loads on multistory buildings, and the response of different stories.

Analyze and Design a Hostel Building in Guwahati, Assam (Zone V)

Learners are required to design and analyze a multi storey RCC building in the seismic zone V area using ETABS software. They will also have to design the substructure and superstructure of the building. Learners are required to extract the output, provide detailing for columns and beams, and foundation design using SAFE.

Our courses have been designed by industry experts to help students achieve their dream careers

Ratings & Reviews by Learners

Skill-Lync has received honest feedback from our learners around the globe.

Google Rating
4.8

Learn Advanced Software Programs with the Analysis and Design of High-Rise Buildings using ETABS and Foundation Design Using SAFE for Seismic Loads Course in Bangalore

Skill-Lync's course in Bangalore helps you understand the multidisciplinary process of designing high-rise buildings, particularly in earthquake-prone areas. 

The Analysis and Design of High-Rise Buildings using ETABS and Foundation Design Using SAFE for Seismic Loads Course in Bangalore

With limited space and increased demand for living areas, builders are designing high-rise buildings to meet people's needs. However, it is critical to consider and address engineering issues such as building stability and seismic load bearing. This ETABS course in Bangalore teaches you dynamic building analysis, earthquake force estimation, seismic design concepts and earthquake-resistant building design.

The structural design course on high-rise buildings provides knowledge on designing concrete buildings and RCC structures using IS 13920. It also teaches the design, analysis, and modelling of structures using the software ETABS and designing raft foundations using SAFE. The course includes two industry projects involving the analysis and design of multi-story buildings for various seismic parameters.

FAQs about the Analysis and Design of High-Rise Buildings using ETABS and Foundation Design Using SAFE for Seismic Loads Course in Bangalore

1. Why should I choose the Analysis and Design of High-Rise Buildings using ETABS and Foundation Design using SAFE for Seismic Loads course by Skill-Lync in Bangalore?

Skill- Lync's course in Bangalore will teach you how to use software programs such as ETABS and SAFE to ensure high-rise buildings' safety in earthquake-prone regions. You will also learn about the regularity and irregularity of building structures and the capacity design philosophy in this ETABS training course. 

2. What are the prerequisites for taking up Skill-Lync's high-rise building course in Bangalore?

Individuals with a civil or structural engineering background can take up this high-rise building course. 

3. What is the fee for Analysis and Design of High Rise Buildings using ETABS and Foundation Design using SAFE for Seismic Loads in Banglore?

The ETABS course fee is flexible and is available in three plans. The Basic plan offers 2 months' access at Rs 7000 per month for 3 months. The Pro plan provides 4 months' access at Rs 10,000 per month for 3 months, and the Premium plan offers lifetime access at Rs 15,000 per month for 3 months. 

4. What are the advantages of pursuing the structural design course on high-rise buildings by Skill-Lync in Bangalore? 

Pursuing ETABS online course in Bangalore at Skill-Lync would offer many benefits to you,

  • Industry-oriented curriculum.
  • Hands-on experience in solving industry projects.
  • Email and forum support from the technical support team to clear your doubts.
  • A certificate of completion for all participants and a merit certificate for the top 5% of the scorers.

5. What career opportunities are available after completing Skill-Lync's ETABS course in Bangalore?

When you complete the ETABS course in Bangalore, you will be eligible for different roles like:

  • Structural engineers in high-risk seismic zones
  • Site civil engineer
  • Structural design engineer

6. After completing this short-term structural design course on high-rise buildings, what is the expected salary range?

The salary depends on your skills and experience. The expected average salary of a structural design engineer is around Rs. 4.85 lakhs per annum.

7. What is ETABS used for in civil engineering?

Civil engineers use ETABS software to design and analyse multi-story structures. ETABS can precisely perform static and dynamic analysis.

8. Can you tell me more about Skill-Lync?

Skill-Lync is among India's leading EdTech platforms dedicated to transforming engineering education. We equip young engineers with the latest skill sets and cutting-edge tools in new-age technologies.
The brainchild of two engineers from Chennai, Skill-Lync, is on a mission to bridge the skill gap between aspiring professionals and the industry's demands through job-oriented courses.

Flexible Pricing

Talk to our career counsellors to get flexible payment options.

Premium

INR 40,000

Inclusive of all charges


Become job ready with our comprehensive industry focused curriculum for freshers & early career professionals

  • 1 Year Accessto Skill-Lync’s Learning Management System (LMS)

  • Personalized Pageto showcase Projects & Certifications

  • Live Individual & Group Sessionsto resolve queries, Discuss Progress and Study Plans.

  • Personalized & Hands-OnSupport over Mail, Telephone for Query Resolution & Overall Learner Progress.

  • Job-Oriented Industry Relevant Curriculumavailable at your fingertips curated by Global Industry Experts along with Live Sessions.

Instructors profiles

Our courses are designed by leading academicians and experienced industry professionals.

image

1 industry expert

Our instructors are industry experts along with a passion to teach.

image

6 years in the experience range

Instructors with 6 years extensive industry experience.

image

Areas of expertise

  • Structural Engineering

Find Analysis and Design of High Rise Buildings using ETABS and Foundation Design using SAFE for Seismic Loads in other cities

Pune

Hyderabad

Delhi

Mumbai

Chennai


Similar Courses

Got more questions?

Talk to our Team Directly

Please fill in your number & an expert from our team will call you shortly.

Please enter a valid number