Menu

Executive Programs

Workshops

Projects

Blogs

Careers

Student Reviews


For Business / Universities

Corporate Training

Hire from US

Academic Up-skilling



All Courses

Choose a category

Loading...

All Courses

All Courses

logo

Mechanical

Uploaded on

30 Nov 2022

What is K - Factor in Sheet Metals?

logo

Skill-Lync

In sheet metal, the K-factor is the ratio of the neutral axis to the material thickness. The inside portion of the bend contracts as a piece of metal is created, while the outer portion expands (see Figure ). The neutral axis is the region where the material does not change, except that it travels from its original location at 50% of the material thickness toward the inside surface of the bend. It represents the transition between compression and expansion. Bending results in elongation because the neutral axis relocates rather than changing its length.

The physical characteristics of the material, its thickness, the interior bend radius, and the manner of forming all affect how far the neutral axis shifts. Refer the metal sheet in the figure above. When a material is bent, the inner and outer portions both experience compression and tension. This changes the length of both inner and outer surfaces. There is a Neutral Plane between both these planes where the change in length is Zero. This is where the transition from Compression to Tension takes place.

You can predict where the neutral axis will go by multiplying the material thickness by the standard default K-factor value of 0.446. In essence, what we're doing is pushing the measured length from a bigger radius—specifically, the neutral axis' length at 50% of the material thickness—onto a smaller radius. We have surplus material, or elongation when the same total measured length is dispersed throughout the smaller radius.

Consider 0.060-inch-thick material. You can predict where the neutral axis will be by multiplying the material thickness by the standard default K-factor value of 0.446. In essence, what we're doing is pushing the measured length from a bigger radius—specifically, the neutral axis' length at 50% of the material thickness—onto a smaller radius. We have surplus material, or elongation when the same total measured length is dispersed throughout the smaller radius.

Mathematics behind K- Factor 

As said, K-factor is a ratio of t/Mt the K-factor is defined mathematically as t/Mt, where t is the neutral axis location and Mt is the material thickness. Because of the specific properties of any given metal, there is no easy way to calculate that value perfectly. Generally, some reference charts are used to find the values. 

The K-factor is usually somewhere between 0.3 and 0.5. Should you wish to calculate the K-factor rather than use a chart, you will need some test pieces—a sample set of four or five pieces should do nicely for this purpose. You need to perform some lab tests to decide the values for the specimen.

As said, The value of the K-factor depends on :

  1. a) Material Thickness
  2. b) Material Properties 
  3. c) Bend Radius

Introduction to Y-factor 

It is nothing but the derived factor out of K-factor in cases of an extra stretch to the materials. 

The formula for it is : 

Y factor = `(K Factar)* pi/2`

It is just the part constant used to calculate the developed length of sheet metals in extra stretch/load scenarios. 

The default value for Y-factor is 0.5 


Author

author

Navin Baskar


Author

blogdetails

Skill-Lync

img

Continue Reading

Related Blogs

Moving Frame of Reference

A Moving Reference Frame (MRF) is a very straightforward, reliable, and effective steady-state Computational Fluid Dynamics (CFD) modeling tool to simulate rotating machinery. A quadcopter's rotors, for instance, can be modeled using MRFs.

Mechanical

12 May 2023


Analysis Settings in Ansys Software

Analysis settings in Ansys are the parameters which determine how the simulation should run.

Mechanical

08 May 2023


Comparing the Explicit and Implicit Methods in FEA

In Ansys, the analysis settings play a very important role in converging the solution and obtaining the results. These involve settings about the timestep size, solver type, energy stabilization etc.

Mechanical

06 May 2023


Tensors, Stress, and 2D Meshing: A Primer for Beginners

A tensor is a mathematical object that describes a geometric relationship between vectors, scalars, and other tensors. They describe physical quantities with both magnitude and direction, such as velocity, force, and stress.

Mechanical

05 May 2023


Reynold's law of Similarity

The Reynolds number represents the ratio of inertial to viscous forces and is a convenient parameter for predicting whether a flow condition will be laminar or turbulent. It is defined as the product of the characteristic length and the characteristic velocity divided by the kinematic viscosity.

Mechanical

04 May 2023



Author

blogdetails

Skill-Lync

img

Continue Reading

Related Blogs

Moving Frame of Reference

A Moving Reference Frame (MRF) is a very straightforward, reliable, and effective steady-state Computational Fluid Dynamics (CFD) modeling tool to simulate rotating machinery. A quadcopter's rotors, for instance, can be modeled using MRFs.

Mechanical

12 May 2023


Analysis Settings in Ansys Software

Analysis settings in Ansys are the parameters which determine how the simulation should run.

Mechanical

08 May 2023


Comparing the Explicit and Implicit Methods in FEA

In Ansys, the analysis settings play a very important role in converging the solution and obtaining the results. These involve settings about the timestep size, solver type, energy stabilization etc.

Mechanical

06 May 2023


Tensors, Stress, and 2D Meshing: A Primer for Beginners

A tensor is a mathematical object that describes a geometric relationship between vectors, scalars, and other tensors. They describe physical quantities with both magnitude and direction, such as velocity, force, and stress.

Mechanical

05 May 2023


Reynold's law of Similarity

The Reynolds number represents the ratio of inertial to viscous forces and is a convenient parameter for predicting whether a flow condition will be laminar or turbulent. It is defined as the product of the characteristic length and the characteristic velocity divided by the kinematic viscosity.

Mechanical

04 May 2023


Book a Free Demo, now!

Related Courses

https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/vehicle-dynamics-matlab_1636606203.png
Vehicle Dynamics using MATLAB
4.8
37 Hours of content
Cae Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/introduction-control-electric-vehicle_1612329773.png
4.9
16 Hours of content
Electrical Domain
https://d28ljev2bhqcfz.cloudfront.net/mainproject/thumb/meshing-and-connections-deployment-of-rear-suspension-of-a-car-73676_1616585003.jpgRecently launched
0 Hours of content
Cae Domain
Showing 1 of 6 courses
Try our top engineering courses, projects & workshops today!Book a Live Demo