Executive Programs





Student Reviews


Academic Training

Informative Articles

Find Jobs

We are Hiring!

All Courses

Choose a category


All Courses

All Courses


Advanced CFD using OpenFOAM

Industry relevant course on Computational Fluid Dynamics

Book a Class, for FREE


Jayesh Suryawanshi

Volkswagen (I) Pvt. Ltd.,

RMD Sinhgad

Mithin SanthaKumar

Timetooth Technology

Cochin University of Science and Technology University in Kochi, Kerala

Manthan Waghaye

Altigreen Propulsion Labs Pvt Ltd

Shri Sant Gajanan Maharaj College Of Engineering

Hemant Sagar

KN Associates

PM polytechnic, Delhi ncr , sonipat

Jangaiah Chikonda



sai dinesh


usharama college of engineering and technology

Vadapalli A S Krishna Maruthi Srinivas

advance technologies

Jawaharlal Nehru Technological University, Kakinada

Manas Metar

Sphinix World Biz Limited

University of Wolverhampton


This course is full of best-in-class content by leading faculty and industry experts in the form of videos and projects

Course Overview

  • This is an advanced level course on applications of CFD with a discussion on core basics and advanced topics in CFD using OpenFOAM. 
  • The course is designed based on current industry trends.
  • The applications chosen are based on current job market requirements.
  • The course is also designed to give a better idea about CFD itself by making use of a wide range of applications.

Course Syllabus

On a daily basis we talk to companies in the likes of Tata Elxsi and Mahindra to fine tune our curriculum.

Week 01 - Introduction to CFD and OpenFOAM

  • Components of NS equations in detail, i.e., diffusion, convection, source terms, etc.
  • How does a basic CFD study work?
  • Generating geometry
  • Meshing
  • Initial conditions
  • Choosing relevant solver
  • Post-processing and repeating till achieving accurate results
  • Installation of OpenFOAM and versions of the software

Week 02 - Introduction to OpenFOAM

  • Basic introduction
  • Background and its syntax with the file structure
  • Example problems from SimpleFoam (flow in the cavity) and potential flow (flow over cylinder) to explain how geometry, meshing, and solving works
  • Introduction to SimpleFoam and PimpleFoam
  • Post-processing with ParaView

Week 03 - Meshing in OpenFOAM & CHT Theory

  • Mesh using snappyHexMesh - An advanced tutorial
  • Example problem:
    • Meshing pipe flow with an obstacle in the middle and explain geometry import, castellation, layering, snap controls and mesh quality controls
  • Basics of CHT theory with theoretical example problems of heat transfer in pipes
  • Convection, conduction, radiation, and the significance of heat transfer coefficients
  • A brief introduction to controls provided in OpenFOAM for heat transfer

Week 04 - Setting up the Simulation and Basics of Heat Exchanger-1

  • Simulation controls provided with OpenFOAM
  • Setting up shell and tube heat exchanger with the tutorial problem in OpenFOAM and explaining the run controls
  • Basics of heat exchanger (theoretical), discussing important coefficients, importing the geometry, and meshing

Week 05 - Basics of Heat exchanger- II & VOF Theory

  • Setting up simulation and post-processing
  • Improving the mesh and setting up a grid-dependent study
  • Volume of fluid theory
    • Solvers
    • Tracking methods
    • Applications
    • Limitations in OpenFOAM

Week 06 - VOF Simulations in OpenFOAM & Rising Bubble - VOF

  • Meshing the domain for VOF problems
  • interFoam and sloshing in a tank
  • Dynamic mesh and adaptive meshing in VOF
  • Example problem: Rising bubble

Week 07- Filling a Container Problem and Oil/Water Separation in a Vessel with OpenFOAM

  • VOF simulation of filling up of a container using interFoam
  • Meshing and post-processing
  • Separation of two isosurfaces of oil and water in an industrial separation vessel using multiphase interFoam to find the inlet velocity for ~99% purity of fluids

Week 08 - Compressible Flow and Turbulence

  • Introduction to Compressible Flows and Turbulence
  • Example problem for compressible flow
    • Flow over a cylinder to show turbulent separation and the Karman vortex sheet
  • Example problem:
    • Flow over an airfoil
  • Importing geometry, making a grid, choosing the type of solver, and the post-processing

Week 09 - Introduction to Combustion CFD and Performing a Burner Simulation

  • Brief lecture on basic definitions and integration of CFD with combustion
  • Differential equations of motion, methods to solve, and types of combustion simulations
  • A basic introduction to combustion in OpenFOAM
  • Simulation of flame progression in a Bunsen burner non-premixed combustion in OpenFOAM (methane+air) using fireFoam solver and analyzing flame propagation

Week 10 - Flow over Bluff body and I.C. Engine Basics

  • Flow over a V-Gutter flame stabilizer with Jet-A + air premixed combustion
  • Mesh generation using snappyHexMesh
  • Using LES solver and fireFoam
  • Introduction to XiEngineFoam and a tutorial problem
  • Setting up the case, solving for chemical kinetics, meshing, and post-processing

Week 11 - Fuel Injectors and Usage of LES in Combustion

  • CFD analysis of combustion in a chamber with fuel injector using reactingFoam
  • Analyzing the exhaust products with varying equivalence ratios using reactingFoam
  • A brief introduction to LES
  • An example problem of exhaust jet (due to high computational cost)

Week 12 - Lean Blow Out and Simulation of Detonation in a Tube

  • Explaining flame extinction in a gas turbine combustor
  • Blow-out conditions
  • Methods to prevent blowout using re-ignition
  • Simulating detonation in a long tube using OpenFOAM with a provided custom-made solver

Our courses have been designed by industry experts to help students achieve their dream careers

Industry Projects

Our projects are designed by experts in the industry to reflect industry standards. By working through our projects, Learners will gain a practical understanding of what they will take on at a larger-scale in the industry. In total, there are 2 Projects that are available in this program.

Simulating flow in an industrial heat exchanger

This project helps the student understand the working of a conjugate heat exchanger using OpenFOAM. In this project, the students will simulate flow in a heat exchanger (geometry provided) with various coolants and perform a study on variation in cooling.

Lean blowout study with flame stabilizer

Lean blowout is a phenomenon common in combustors. In this project, students will try to understand how to mitigate the lean blowout phenomenon by making use of a flame stabilizer to help the flame hold on to a bluff body. They have to perform the analysis using the solver XiFoam and LES turbulence model.

Our courses have been designed by industry experts to help students achieve their dream careers

Ratings & Reviews by Learners

Skill-Lync has received honest feedback from our learners around the globe.

Google Rating

Learn to Test CFD Models with the Advanced CFD using OpenFOAM Course

In 2020, over 4000 and 27,000 job vacancies were available for CFD Engineers in India and abroad. The IMARC Group forecasts that the global CFD market is expanding at 8.2% of CAGR. It implies that the job available in this domain in increasing and equipping yourself with the right skillsets might provide you with a promising career.

Skill-Lync’s Advanced CFD using OpenFOAM is a 12-week online course. As one of the best CFD mechanical engineering courses, it teaches you all the essential skills for performing various analyses. Using OpenFOAM, you can analyse the fluid flow of a heat exchanger.

An advanced CFD course will help you build the skills necessary to kickstart a career in the CFD industry. The fee for learning OpenFOAM software ranges from INR 7,000 to INR 15,000 monthly for three months.

Who Should Take This Course?

The industry-oriented advanced CFD course is for students and graduates of mechanical engineering and related streams of engineering. If you are interested in subjects related to FEA and Fluid Dynamics, this course would definitely excite you. Experienced professionals who want to upskill or are looking for a career transition to this domain can learn OpenFOAM software from Skill-Lync.

What will you learn?

The course will equip you with cutting-edge tools followed by top OEMs worldwide. Through the Advanced CFD using OpenFOAM, you will get a clear understanding of:

  • Basics of the heat exchanger and setting up of shell and tube heat exchanger.
  • The volume of fluid theory and meshing of VOF problems.
  • Compressible flow and Turbulence flow.
  • Different types of combustion simulations.
  • Mesh generation using snappyHexMesh
  • Methods to prevent blowout using re-ignition

Skills You Will Gain

  • Hands-on experience in OpenFOAM.
  • Complete knowledge of VOF theory and its simulation using OpenFOAM.
  • In-depth knowledge of how to simulate the flow in a heat exchanger.

Key Highlights of The Program

  • The Advanced CFD using OpenFOAM is a 12-week long course.
  • Besides the course completion certificate for all participants, the top 5% of learners get a merit certificate.
  • You will get email and forum support to clear your doubts during the course.

Career Opportunities after taking the course

Upon completing the Advanced CFD using OpenFOAM, numerous job opportunities will open up for you. Some exciting positions that you can work for include:

  • CFD Engineer
  • CFD Developer
  • CAE Engineer

FAQs on Advanced CFD using OpenFOAM Course

  1. Who can take up the Advanced CFD using the OpenFOAM course?

Students and graduates of mechanical engineering and related engineering streams can take up the Advanced CFD using the OpenFOAM course. It is for anyone interested in CFD, design engineering and FEA.

  1. Is the Advanced CFD using OpenFOAM as an online program?

Yes, the CFD mechanical engineering course is 100% online. 

  1. What is the duration of the Advanced CFD using OpenFOAM course?

The advanced CFD course is a 12-week course covering all the basic to advanced level concepts essential for designing, analysing and simulating different components using SolidWorks.

  1. What is the fee for pursuing the Advanced CFD using the OpenFOAM course?

The fee for learning the advanced CFD course at Skill-Lync is flexible and is available in three plans. The basic plan provides you with two months of access at INR 7,000 per month, the Pro plan provides four months of access at INR 10,000 per month, and the Premium plan provides you lifetime access at INR 15,000 per month.

  1. How much can a CFD Engineer earn?

According to Ambitionbox, the average annual salary of a CFD Engineer reaches up to INR 5.5 Lakhs per annum. However, your pay package varies with your experience and expertise.

  1. Is there any certificate for completing the Advanced CFD using the OpenFOAM course?

Yes, you shall be given a course completion certificate after completing the CFD advanced course. The top 5% of the scorers will receive a merit certificate alongside the course completion certificate.

  1. Is any technical support available for the CFD mechanical engineering course?

Yes, you can clear your doubts during coursework from our technical support team through email and forum support.

  1. How to learn OpenFOAM?

With the knowledge of OpenFOAM, you could solve many problems related to fluid flow. Basic knowledge of Navier stokes equation, CFD principles and programming will make learning easier. You can also enrol for an Advanced CFD using the OpenFOAM course from Skill-Lync to learn basic to advanced concepts in this domain.

  1. Can you tell me more about Skill-Lync?

Skill-Lync is among India’s leading EdTech platforms dedicated to transforming engineering education. We equip young engineers with the latest skill sets and cutting-edge tools in new-age technologies.

The brainchild of two engineers from Chennai, Skill-Lync, is on a mission to bridge the skill gap between aspiring professionals and the industry’s demands through job-oriented courses.

Flexible Pricing

Talk to our career counsellors to get flexible payment options.


INR 40,000

Inclusive of all charges

Become job ready with our comprehensive industry focused curriculum for freshers & early career professionals

  • 1 Year Accessto Skill-Lync’s Learning Management System (LMS)

  • Personalized Pageto showcase Projects & Certifications

  • Live Individual & Group Sessionsto resolve queries, Discuss Progress and Study Plans.

  • Personalized & Hands-OnSupport over Mail, Telephone for Query Resolution & Overall Learner Progress.

  • Job-Oriented Industry Relevant Curriculumavailable at your fingertips curated by Global Industry Experts along with Live Sessions.

Instructors profiles

Our courses are designed by leading academicians and experienced industry professionals.


1 industry expert

Our instructors are industry experts along with a passion to teach.


3 years in the experience range

Instructors with 3 years extensive industry experience.


Areas of expertise

  • Computational Fluid Dynamics

Similar Courses

Got more questions?

Talk to our Team Directly

Please fill in your number & an expert from our team will call you shortly.

Please enter a valid number