Menu

Executive Programs

Workshops

Projects

Blogs

Careers

Student Reviews



More

Academic Training

Informative Articles

Find Jobs

We are Hiring!


All Courses

Choose a category

Loading...

All Courses

All Courses

logo

Basics of Computer Vision using Python in Hyderabad

A comprehensive course on Computer Vision using Python. This course is highly suited for beginners

Book a Class, for FREE

RELATED RECENT PLACEMENTS

Parthiban M

Riverstone

SRM TRP Engineering College

Kotesh Mogudala

Tata Autocomp Systems

Anurag University, Hyderabad

Vipin Jiwane

Orena Solutions

Walchand College of Engineering, Sangli

Chandrakumar ADEPU

Selec Control

Ganapathy Engineering College

Jiji M

Adrasti

Sreepathy Institute of Management And Technology (SIMAT)

Durga Prasad Sunnam

Adrasti

Ucet Technical school in Dokiparru, Andhra Pradesh

Pratik Mankar

Adrasti

B R Harne College Of Engineering

MAHATHIR MOHAMED

TATsunoInida Pvt ltd

K.S.K College of Engineering and Technology

Syllabus

This course is full of best-in-class content by leading faculty and industry experts in the form of videos and projects

Course Overview

  • This course provides the parameters and processes that define computer vision and delve into details like image processing, edge detection and image segmentation.
  • This course provides the basics of classical computer vision, 2d and 3d processing, camera projections, use of machine learning in vision systems

Course Syllabus in Hyderabad

On a daily basis we talk to companies in the likes of Tata Elxsi and Mahindra to fine tune our curriculum.

Week - 01 Introduction to Computer Vision

  • General introduction, 
    • History of CV
    • Formulating the field, why is it a hard topic?
  • Definition of computer vision
    • Required components
    • What qualifies as a vision system
  • Humans as a vision system: how good do we “see”?
  • Useful applications
  • Image acquisition using a camera
  • Different types of cameras for different domain
    • Stills, Video, DSLR, Bodycam, Drone
    • Infrared, Ultrasonography, Magnetic resonance
  • Physics of Color: color spectrum
  • Human encoding of color: Rods and cons of eyes
  • Color spaces: 
    • RGB, CMYK, HSV
    • Color balance
  • Camera specifications: 
    • Pinhole
    • CMOS
    • CCD
  • Image specifications: 
    • Pixel (Picture element)
    • Aspect ratio, HD, Interlacing
    • Conversions
  • Type of digital images:
    • Binary, Grayscale, Color 
    • Conversion techniques

 

Week - 02 Image processing

  • Noise Removal
    • Pixel Neighborhood
    • Salt and pepper noise
    • Morphing to hide cracks in the image
  • Applying filters to images
    • Convolution of matrices
  • Types of Filter: 
    • Mean or Box filtering
    • Median Filter
    • Mode, Mean, Pass 
    • Generic properties of smoothing
    • Anisotropic filtering
  • Gaussian: Isotropy condition, formulation, figure
    • Weight influence of pixels by their distance to the center pixel
    • Spread parameter
    • Motivating examples
  • Filter Separability
    • Computation and Maths
    • Gaussian Separability

 

Week - 03 Edge Detection

  • Introduction to edges and gradients
    • Intensity difference
    • 1D versus 2D edge detection
  • Edge detection in mammals
  • 1D signals and 2D signals
    • Difference and derivative mask
    • Examples
  • Image Gradient
  • Image noise: Gaussian noise
  • Smoothing + Edge detection
    • Gaussian Derivative Signals
  • 2D gradient operators
    • Prewitt Masks
    • Sobel Masks
  • Steerable filters
  • Laplacian filters
    • Laplacian of Gaussian
    • Zero Crossings
  • Canny edge detection
    • Hysteresis thresholding
    • Non-maximal Suppression

 

Week - 04 Image Segmentation and features

  • Thresholding based on histogram
  • Otsu, Adaptive Otsu
    • Formulation, Advancements, and effectiveness
    • Examples
  • Distance Metric: Norm functions
  • Thresholding based on different metrics, covariance-based
  • Different types of background subtraction
    • Mean, Euclidean, Mahalanobis
    • Covariance matrix, multidimensional mahalanobis 
  • Shadow modeling
    • Transform to color spaces
  • Multimodal background distribution
    • Gaussian Mixture Model
    • Foreground Assignment
  • Clustering to Image Segmentation
    • Agglomerative Clustering
    • K Means, K Means ++
    • Mean Shift Clustering
    • Hierarchical Clustering

 

Week - 05 Binary Image Operation

  • Morphology: 
    • Erosion, Dilation
    • Open, Close
  • Connected component
    • Counting objects: Sequential count etc
    • Recursive count
    • Remove Small Features
  • Hough Transformation Algorithm
  • Radon Transformation Algorithm
  • Image Pyramids: Gaussian Laplacian Coding Compression

 

Week - 06 Shape of Objects

  • Largest component
  • Medial axis
  • Boundary coding 
  • Chain Coding
  • Shape Numbering
  • Quadtree Representation
  • Bounding box
  • Perimeter, Compactness, Circularity
  • Centroid
  • Spatial Moments
    • Central
    • Second third order
  • Similitude Moment
  • Dimensionality Reduction
  • Linear basis set
  • Principal Component Analysis
    • Eigen Values and Vectors
    • Finding Eigen sets
    • Test on synthetic and real data
  • Face Recognition using PCA: kernel trick

 

Week - 07 Motion

  • Definition, simple motion
    • Image differentiation
    • Single constant threshold
  • Weber's Law
  • Optical flow
    • Formulas, geometry, example
  • Normal optic flow
  • Weighted aggregate,
  • Hierarchical Motion Estimation
  • Motion: Use of linear Algebra
  • 3D motion of a point
    • Matrix operations for different motion in objects
    • Pinhole Camera Model
  • 2D matrix motion
    • Translation Motion
    • Similarity Motion
    • Affine Motion
  • Motion History Image
    • Spatial Pattern of where motion occurred
    • Progression of motion
  • Motion Energy Image
  • Silhouette Difference

 

Week - 08 Matching & Tracking

  • Motivation, Example
  • Feature-based tracking
  • How to find good features to track
  • Find Interest Points (General)
    • Panoramic stitching
  • Features from Accelerated Segment (FAST)
  • Harris Detector
    • Gradients
    • Window weighing function
    • Harris Corner Response Function

 

Week - 09 Interest Point

  • SURF algorithm
  • SIFT algorithm for automated feature selection
  • Free alternative to SIFT and SURF in OpenCV
  •  Laplacian Of Gaussian
    • Automated Feature selection
  • Diff Of Gaussian
  • Covariance tracking
    • Descriptor Matrix
    • Finding best match
    • Rotation Invariance
  • Kanade-Lucas-Tomasi (KLT) Tracker
    • Tracking Features
    • Formulations
    • Reduction Pyramid
    • Select “good” feature based on Eigen Value
  • Mean shift tracking
  • Weighted histograms using spatial kernels
      • Evaluating similarity between distributions using Bhattacharyya coefficient
    • Object tracking by target localization (in each frame) by maximizing the similarity function using mean shift
  • Template Matching
    • Sum-of-Absolute Differences
    • Sum-of-Squared Differences
    • Normalized Cross-Correlation

 

Week - 10 Image Registration

  • Lens
    • Thin Lens Model
    • Focus, DoF, Aperture,
  • Projective Camera Model
    • Pinhole Camera
    • Intrinsic and Extrinsic Camera Parameters
  • Homogeneous Coordinate
  • Projection
    • Camera Projection
  • Camera Matrices
    • Estimating camera matrices
    • Extracting parameter P
  • Calibration
  • Projection
    • Perspective Effective
    • Affine
    • Orthographic
    • Weak
  • Transformation: Translation, Rotation, Skew, Reflection
  • Planar homography/ Projective Transformation
    • Solving homography matrix
    • Normalized Direct Linear Transformation
    • Example on real 3D data
  • RANSAC Algorithm
  • Gold Standard Algorithm

 

Week - 11 Lens & Camera projection

  • 3D intro
    • Motivation
    • Ambiguity in single View
  • Geometry for simple stereo system
  • Depth and Calibration
  • Epipolar Geometry
    • Baseline, Epipole, Epipolar Line, Epipolar Plane
    • Epipolar Constraint
    • Converging camera
    • Parallel Camera
  • Camera Motion
  • Fundamental Matrix
    • Computation
    • 8 point algorithm
  • Depth Matrix
  • Stereo Matching Algorithm
    • Correspondence Search
    • Estimate disparity by finding corresponding points
    • Depth is inversely related to disparity
  • Stereo Matching as Energy Minimization
  • Graph cut algorithm

 

Week - 12 SOTA ML based CV Techniques

  • LeNet
  • AlexNet
  • General detection techniques
  • YOLO
  • GAN
  • Autonomous Vehicle Specific Networks
  • Gaussian Neural Network
  • Confidence in classification output: decide object confidence for autonomous vehicle

Our courses have been designed by industry experts to help students achieve their dream careers

Industry Projects in Hyderabad

Our projects are designed by experts in the industry to reflect industry standards. By working through our projects, Learners will gain a practical understanding of what they will take on at a larger-scale in the industry. In total, there are 2 Projects that are available in this program.

Real time traffic tracking using matching algorithms

In this project, the students are expected to perform the "matching algorithms" to capture moving pedestrians and vehicles traffic and compare them quantitatively.

Real time video segmentation using machine learning and feature extraction

In this project, students will have to download public road video dataset and design a machine learning based technique to segment and identify specific tasks related to autonomous systems and vehicles using open source and data competitions (can choose between kaggle competitions)

Our courses have been designed by industry experts to help students achieve their dream careers

Ratings & Reviews by Learners

Skill-Lync has received honest feedback from our learners around the globe.

Google Rating
4.8

Upskill yourself with the Basics of Computer Vision using Python course in Hyderabad

The Skill-Lync's Basics of Computer Vision using Python is a three-month Computer Vision course. The industry-experts-led program focuses on introductory-to-advanced computer vision concepts and their real-world applications, using Python as the pivotal tool. This computer vision online course is designed to help students grasp the fundamentals and governing computer vision techniques, including image processing & segmentation, edge detection, etc. It will also assist them in acquiring the requisite problem-solving and programming skills to crack in-demand job roles in the leading tech corporations setting up their bases in Hyderabad, an emerging tech epicenter of India.

The curriculum consists of a twelve-week industry-oriented study plan covering crucial computer vision processes, including 2D & 3D computer vision, ML implementation in vision systems, camera projections, etc. It also comprises two complete projects on Real-time traffic tracking and Real-time video segmentation to help deliver hands-on CV with Python training in Hyderabad. 

Skill-Lync has followed an industry-centric approach while designing the computer vision with python course in Hyderabad, keeping in mind the future of India's advanced, autonomous tech industry. This program offers a convenient way to learn computer vision with Python as it is available in three different options, each with its own benefits. You can select the one you prefer and embark on your journey to get upskilled. Regardless, Skill-Lync will provide you with dedicated technical support throughout the course.

FAQs About the Basics of Computer Vision Using Python Course in Hyderabad

Why should I choose Skill-Lync's Basics of Computer Vision using Python course in Hyderabad?

With the current boom in the cutting-edge, autonomous technology space, this computer vision course in Hyderabad will set you on the right career trajectory for in-demand job roles in computer vision, AI/ML, automotive technology, and other domains.

What are the prerequisites for taking Skill-Lync's Basics of Computer Vision using Python course in Hyderabad?

This program is open to all students and professionals with a fundamental understanding of Algebra & Statistics concepts and interested in pursuing a career in the futuristic, cutting-edge autonomous tech industry.

What is the program fee for Skill-Lync's Basics of Computer Vision using Python course in Hyderabad?

The course fee depends on the candidates' requirements. For the basic plan, you need to pay INR 7000 per month for 3 months for two months access, for the pro plan, you need to pay INR 10,000 per month for 3 months for 4 months access, and for the premium plan, you have to pay INR 15,000 for 3 months for lifetime access.

What are the benefits of pursuing Skill-Lync's Basics of Computer Vision using Python course in Hyderabad?

The best computer vision course will provide you with hands-on training on fundamental-to-advanced computer vision and ML concepts, and application techniques like Image processing, 3D vision, etc. Moreover, you will get to learn and master pivotal tools, including Python, OpenCV, TensorFlow, and Keras TensorFlow 2.

What are the career prospects after completing Skill-Lync's Basics of Computer Vision using Python course in Hyderabad?

After successful completion of this computer vision course online in Hyderabad, you get upskilled to apply to several in-demand job positions in Hyderabad, including-

  • Computer Vision Engineer (Mapping - Autonomous Vehicles)
  • Autonomous Vehicles Test Engineer
  • AI Computer Vision Developer
  • Automation and Control Engineer
  • Camera System Engineer

What is the expected salary range after completing Skill-Lync's Basics of Computer Vision using Python course in Hyderabad?

The expected salary for a Computer Vision engineer ranges from INR 3.74 Lakhs to INR 17.24 Lakhs, with an average annual salary of INR 6.95 Lakhs. However, your pay package primarily depends on your expertise.

Flexible Pricing

Talk to our career counsellors to get flexible payment options.

Premium

INR 40,000

Inclusive of all charges


Become job ready with our comprehensive industry focused curriculum for freshers & early career professionals

  • 1 Year Accessto Skill-Lync’s Learning Management System (LMS)

  • Personalized Pageto showcase Projects & Certifications

  • Live Individual & Group Sessionsto resolve queries, Discuss Progress and Study Plans.

  • Personalized & Hands-OnSupport over Mail, Telephone for Query Resolution & Overall Learner Progress.

  • Job-Oriented Industry Relevant Curriculumavailable at your fingertips curated by Global Industry Experts along with Live Sessions.

Instructors profiles

Our courses are designed by leading academicians and experienced industry professionals.

image

1 industry expert

Our instructors are industry experts along with a passion to teach.

image

7 years in the experience range

Instructors with 7 years extensive industry experience.

image

Areas of expertise

  • Machine Learning

Find Basics of Computer Vision using Python in other cities

Pune

Delhi

Mumbai

Bangalore

Chennai


Similar Courses

Got more questions?

Talk to our Team Directly

Please fill in your number & an expert from our team will call you shortly.

Please enter a valid number